

Rank-selected Segre powers of the Boolean lattice Sheila Sundaram

University of Illinois Springfield

University of Minnesota

Paper is available at: https://ecajournal.haifa.ac.il/Volume2025/ECA2025_S2A19.pdf

Segre powers preserve CM

Let P be a **bounded** partially ordered set , with rank function ρ . For each $t \geq 1$, **define** the t-fold **Segre power** of P, $P^{(t)}$, to be the induced subposet of the t-fold product poset $P \times \cdots \times P$ consisting of the elements

$$\{(x_1,\ldots,x_t): \rho(x_1)=\cdots=\rho(x_t)\}=\underbrace{P\circ\cdots\circ P}_{t}.$$

 $P^{(l)}$ is bounded and ranked with the rank function ρ .

$$(x_1, \dots, x_t) < (y_1, \dots, y_t) \iff x_i < y_i, 1 \le i \le t$$

Definition (K. Baclawski 1980, R. Stanley 1977): Let P be as above, and let k be any field. Then P is **Cohen-Macaulay** over k if for every open interval (x, y), the reduced simplical homology $\tilde{H}_i(x,y)$ of (x,y) vanishes in all but the top dimension rk(y) - rk(x) - 2.

Theorem (A. Björner & V. Welker 2005): If P is (homotopy) Cohen-Macaulay over k, then so is $P \circ P$.

P Cohen-Macaulay \Rightarrow there is ONE homology module, on which the automorphism group of P, Aut(P), acts.

The action of Aut(P)

If $G = \operatorname{Aut}(P)$, then $G^{\times t}$ acts on $P^{(t)}$, and G itself acts diagonally on $P^{(t)}$. Let $P = B_n$, the Boolean lattice of subsets of [n]. Then $\operatorname{Aut}(P) = \mathfrak{S}_n$, the symmetric group.

GOAL: To determine the actions of $\mathfrak{S}_n^{\times t}$ and of the diagonal subgroup \mathfrak{S}_n on the unique nonvanishing homology of the t-fold Segre power of B_n .

FACT: \mathfrak{S}_n acts on the unique nonvanishing homology of B_n like the sign representation.

The top homology of $B_n^{(t)}$: dimension

Definition: An **ascent** of a permutation $\sigma \in \mathfrak{S}_n$ is an $i, 1 \le i \le n-1$, with $\sigma(i) < \sigma(i+1)$.

For $t \geq 1$, define $w_n^{(t)}$ to be the number of t-tuples of permutations in \mathfrak{S}_n with no common ascent.

Note: $w_n^{(1)} = 1$. In 1976, Stanley showed the following:

Proposition: The Möbius number of $B_n^{(t)}$ is $(-1)^{n-2}w_n^{(t)}$ These numbers satisfy the generating function

$$\sum_{n \geq 0} w_n^{(l)} \frac{z^n}{n!^l} = \frac{1}{f(z)}, \quad \text{ where } f(z) = \sum_{n \geq 0} (-1)^n \frac{z^n}{n!^l}.$$

The numbers $w_n^{(t)}$ were studied by Abramson and Promislow (1978). The case t = 2 was studied (more famously) by Carlitz, Scoville and Vaughan (1976).

The dimensions table (Compiled from oeis A212855).

$t \backslash n$	0	1	2	3	4	5
t = 1	1	1	1	1	1	1
2	1	1	3	19	211	3651
3	1	1	7	163	8983	966751
4	1	1	15	1135	271375	

Tab. 1: The numbers $w_n^{(t)}$ for $0 \le n \le 5, 1 \le t \le 4$

The product Frobenius characteristic

- \mathbb{R}^n : the v.s. spanned by the class functions of \mathfrak{S}_n over \mathbb{Q} .
- $\underline{\mathbf{n}} = (n_1, \dots, n_t)$ in $\mathbb{Z}_{\geq 0}^t$, $R^{\underline{\mathbf{n}}} := \bigotimes_{i=1}^t R^{n_i}$, $\mathfrak{S}_{\underline{\mathbf{n}}} = \times_{i=1}^t \mathfrak{S}_{n_i}$.
- (X^i) , $i = 1, \ldots, t$: t sets of variables.
- Λ^{n_i}(Xⁱ): ring of symmetric functions in the ith set of variables (X^i) , of homogeneous degree n_i .

Identify:
$$\bigotimes_{i=1}^t f_{n_i}(X^i) \mapsto \prod_{i=1}^t f_{n_i}(X^i)$$
.

Definition (Li-Sundaram 2024): Let $f_{n_i} \in R^{n_i}$ and define the map Peh: $R^{\underline{n}} = \bigotimes_{i=1}^t R^{n_i} \to \bigotimes_{i=1}^t \Lambda^{n_i}(X^i)$ as:

$$\operatorname{Pch}\left(\bigotimes_{i=1}^{l} f_{n_{i}}\right) := \prod_{i=1}^{l} \operatorname{ch}(f_{n_{i}})(X^{i}),$$

• ch is the ordinary Frobenius characteristic map on R^{n_i} .

For the $(\times_{i=1}^t \mathfrak{S}_{n_i})$ -irreducible $\bigotimes_{i=1}^t \chi^{\lambda^i}$ indexed by the ttuple $\underline{\lambda} = (\lambda^1, \dots, \lambda^t)$:

$$\mathrm{Pch}(\bigotimes_{i=1}^{l}\chi^{\lambda^{i}}) = \prod_{i=1}^{l}s_{\lambda^{i}}(X^{i})$$

Product characteristic: example

Example: Let t = 2, the regular representation ψ of $\begin{array}{l} \mathfrak{S}_2 \times \mathfrak{S}_3 \ {\rm decomposes \ into \ irreducibles \ as} \ \chi^{((2),(3))} + \chi^{((1^2),(3))} + \\ 2\chi^{((2),(2,1))} + 2\chi^{((1^2),(2,1))} + \chi^{((2),(1^3))} + \chi^{((1^2),(1^3))}. \ {\rm We \ have} \end{array}$

$$\begin{split} \operatorname{Pch}(\psi) &= s_{(2)}(X^1)s_{(3)}(X^2) + s_{(1^2)}(X^1)s_{(3)}(X^2) \\ &+ 2s_{(2)}(X^1)s_{(2,1)}(X^2) + 2s_{(1^2)}(X^1)s_{(2,1)}(X^2) \\ &+ s_{(2)}(X^1)s_{(1^3)}(X^2) + s_{(1^2)}(X^1)s_{(1^3)}(X^2) \\ &= h_1^2(X^1)h_1^3(X^2). \end{split}$$

The top homology of $B_n^{(t)}$

Fix $t \geq 1$. The direct product $\mathfrak{S}_n^{\times t}$ acts on the top homology $\tilde{H}_{n-2}(B_n^{(t)})$ of the t-fold Segre power $B_n^{(t)}$. Let $\beta_n^{(t)}$ be its product Frobenius characteristic.

Theorem (Li-Sundaram 2024): Set $\beta_0^{(t)} = 1$. Then $\beta_n^{(t)}$ satisfies the recurrence

$$\sum_{i=0}^{n} (-1)^{i} \beta_{i}^{(t)} \prod_{j=1}^{l} h_{n-i}(X^{j}) = 0.$$

A new homomorphism

Define, for each $t \ge 1$,

- $Z_n^{(t)} := \prod_{j=1}^t h_n(X^j)$.
- For each $\lambda \vdash n, Z_{\lambda}^{(t)} = \prod_{j} Z_{\lambda_{j}}^{(t)} = \prod_{j=1}^{t} h_{\lambda}(X^{j})$. A map $\Phi_{t} : \Lambda(X) \to \bigotimes_{j=1}^{t} \Lambda(X^{j})$ by multiplicatively and linearly extending

$$\Phi_t(h_n) := \prod_{j=1}^t h_n(X^j) = Z_n^{(t)}.$$

Proposition (Li-Sundaram 2024): Fix $t \ge 1$. The map $\Phi_t: \Lambda(X) \to \bigotimes_{i=1}^t \Lambda(X^i)$ is an injective ring homomorphism. It satisfies $\Phi_t(h_\lambda) = Z_\lambda^{(t)}$ and $\Phi_t(e_n) = \beta_n^{(t)}$. Hence, $\{\beta_n^{(t)}\}_n$ is an algebraically independent set.

Note: $\Phi_t(s_\lambda)$ does not always expand positively into irreducibles of $\mathfrak{S}_n^{\times t}$. If $\lambda = 322$, then the multiplicity of (43, 61) in the module $\Phi_2(s_{322})$ is -1.

Irreducible decomposition of $\beta_n^{(t)}$

For $\lambda \vdash n$ with $m_i(\lambda)$ parts of size i and number of parts $\ell(\lambda)$, define the integer

$$c_{\lambda} = (-1)^{n-\ell(\lambda)} \frac{\ell(\lambda)!}{\prod_{i} m_{i}(\lambda)!} = (-1)^{n-\ell(\lambda)} \binom{\ell(\lambda)}{m_{1}(\lambda), m_{2}(\lambda, \dots)}.$$

Theorem: (Li-Sundaram 2024): Let $\beta_n^{(t)}$ be the product Frobenius characteristic of the top homology of $B_n^{(t)}$. Then (1) $\beta_n^{(l)} = \sum_{\lambda \vdash n} c_{\lambda} Z_{\lambda}^{(l)}$

- (2) The multiplicity of the $\mathfrak{S}_n^{\times t}$ -irreducible indexed by the t-tuple of partitions $\underline{\mu} = (\mu^1, \dots, \mu^l), \, \mu^j \vdash n, \, 1 \leq j \leq t,$
- in $\tilde{H}_{n-2}(B_n^{(t)})$ equals $c_{\underline{\mu}}^t = \sum_{\lambda \vdash n} c_\lambda \prod_{j=1}^t K_{\mu^j,\lambda}$, where $K_{\mu,\nu}$ is the Kostka number.
- in the (possibly virtual) module with product Frobenius characteristic $\Phi_l(s_\lambda)$ is $\sum_{\nu \vdash n} \mathcal{M}(s,h)_{\lambda,\nu} \prod_{j=1}^l K_{\mu^j,\nu}$ where $\mathcal{M}(s,h)$ is the transition matrix from Schur functions to homogeneous functions.

Example: $\beta_3^{(2)}$ and $\Phi_t(s_{321})$

Recompute $\beta_3^{(2)}$, using $e_3=h_3-2h_2h_1+h_1^3$. Note that $h_2h_1=s_{(3)}+s_{(2,1)}$ and $h_1^3=s_{(3)}+2s_{(2,1)}+s_{(1^3)}$.

$$\begin{split} \beta_3^{(2)} &= \Phi_t(e_3) = Z_{(3)}^{(2)} - 2Z_{(2,1)}^{(2)} + Z_{(1^3)}^{(2)} \\ &= s_{(3)}(X^1)s_{(3)}(X^2) \\ &- 2(s_{(3)}(X^1) + s_{(2,1)}(X^1))(s_{(3)}(X^2) + s_{(2,1)}(X^2)) \\ &+ \Big(s_{(3)}(X^1) + 2s_{(2,1)}(X^1) + s_{(1^3)}(X^1)\Big) \Big(s_{(3)}(X^2) \\ &+ 2s_{(2,1)}(X^2) + s_{(1^3)}(X^2)\Big) \end{split}$$

 $+2 s_{(2,1)}(X^1)e_3(X^2)+2 e_3(X^1)s_{(2,1)}(X^2)$

 $= h_3(X^1)e_3(X^2) + e_3(X^1)h_3(X^2) + e_3(X^1)e_3(X^2) + s_{(2.1)}(X^1)s_{(2.1)}(X^2)$

Let $\lambda = (3, 2, 1)$. The multiplicity of the t-tuple of partitions (μ^1, \dots, μ^t) of 6 in the module with product Frobenius characteristic $\Phi_l(s_\lambda)$, is

$$\begin{split} & \prod_{j=1}^t K_{\mu^j,321} - \prod_{j=1}^t K_{\mu^j,33} - \prod_{j=1}^t K_{\mu^j,411} + \prod_{j=1}^t K_{\mu^j,51}, \\ & \text{since } s_{(3,2,1)} = h_{321} - h_{33} - h_{411} + h_{51}. \end{split}$$

The action of \mathfrak{S}_n on $\tilde{H}_{n-2}(B_n^{(t)})$

Let g_{μ}^{λ} denote the Kronecker coefficient $\langle \chi^{\lambda}, \prod_{i=1}^{t} \chi^{\mu_{i}} \rangle$, for a \overline{t} -tuple (μ^1, \dots, μ^t) of partitions of $n, \lambda \vdash n$, and irreducible characters χ^{ν} of \mathfrak{S}_n .

Let * denote the internal product in the ring of symmetric functions $\Lambda^n(X)$ in a single set of variables X.

Theorem (Li-Sundaram 2024): For the diagonal \mathfrak{S}_{n} -action on $\tilde{H}_{n-2}(B_{n}^{(t)})$,

 $\operatorname{ch} \tilde{H}_{n-2}(B_n^{(t)}) = \sum_{\underline{\mu}} c_{\underline{\mu}}^t g_{\underline{\mu}}^{\lambda} s_{\lambda} = \sum_{\underline{\mu}} c_{\underline{\mu}}^t s_{\mu^t} * \cdots * s_{\mu^t}.$ Sum is over all $\underline{\mu} = (\mu^1, \dots, \mu^l), \, \mu^j \vdash n, \, 1 \leq j \leq t.$

Data on diagonal action

• For n=2: $\tilde{H}_0(B_2^{(t)})=2^{t-1}\chi^{(1^2)}+(2^{t-1}-1)\chi^{(2)}$, in agreement with the case t = 1. In fact it is e-positive:

$$\operatorname{ch} \tilde{H}_0(B_2^{(t)}) = (2^{t-1} - 1)e_{(1,1)} + e_2.$$

The dimension is $w_2^{(t)} = 2^t - 1$. (rank 2 poset...)

• For n=3: $\tilde{H}_1(B_3^{(t)})=2^{t-1}\chi^{(1^3)}+(2^{t-1}-1)\chi^{(3)}+(2^t-2)\sum_{r=1}^t\binom{t}{r}(\chi^{(2,1)})^{\otimes r}$, again agreeing with the case t=1, and it is e-positive:

$$\operatorname{ch} \tilde{H}_1(B_3^{(t)}) = (6^{t-1} - 3^{t-1})e_{(1,1,1)} + e_3.$$

The dimension is $w_3^{(t)} = 6(6^{t-1} - 3^{t-1}) + 1$. See oeis A248225, A127222 for $\{6^t - 3^t\}$

• For $n \geq 4$, SageMath shows the e-positivity breaks

down, even for t=2: $\tilde{H}_2(B_4^{(2)})=10\chi^{(1^4)}+9\chi^{(4)}+26\chi^{(3,1)}+18\chi^{(2,2)}+26\chi^{(2,1^2)},$ and ch $\tilde{H}_2(B_4^{(2)}) = 9e_{(1,1,1,1)} - \mathbf{e}_{(\mathbf{2},\mathbf{1},\mathbf{1})} + e_{(2,2)} + e_4$.

Rank-selection

Let P_J be the **rank-selected subposet** of P consisting of elements in the rank-set J, together with $\hat{0}$ and $\hat{1}$.

 \bullet If P is Cohen-Macaulay, so is P_J for every subset J• (Stanley) The module of maximal chains $\alpha_P(J)$ and the top homology module $\beta_{P}(J)$ of P(J) are related:

$$\alpha_P(J) = \sum_{U \subseteq J} \beta_P(U), \ \beta_P(J) = \sum_{U \subseteq J} (-1)^{|J| - |U|} \alpha_P(U).$$

For the poset $P = B_n^{(t)}$ we have

Theorem (Li-Sundaram 2024):

 $\begin{array}{l} \alpha_n^{(t)}(J) = \sum_{\lambda \vdash n} \Phi_t(s_\lambda) \mid \{SYT \ \tau \ \text{of shape} \ \lambda : \mathsf{Des}(\tau) \subseteq J\} \mid; \\ \beta_n^{(t)}(J) = \sum_{\lambda \vdash n} \Phi_t(s_\lambda) \mid \{SYT \ \tau \ \text{of shape} \ \lambda : \mathsf{Des}(\tau) = J\} \mid. \end{array}$

Theorem (Li-Sundaram 2024): The product Frobenius characteristic Pch $\tilde{H}(B_n^{(t)}(J))$ satisfies the follow-

$$\beta_n^{(t)}(J) + \beta_n^{(t)}(J \setminus \{j_r\}) = \beta_{j_r}^{(t)}(J \setminus \{j_r\}) \prod_{i=1}^{t} h_{n-j_r}(X^i).$$

Stable principal specialisation

The stable principal specialisation ps f of a symmetric function f in variables x_1, x_2, \ldots is $f(1, q, q^2, \ldots)$. Let $B_{n,q}$ denote the lattice of subspaces of an ndimensional vector space over a field with q elements.

Theorem (Li-Sundaram 2024): For the rankselected homology module $\beta_n^{(t)}(J)$, ps $\beta_n^{(t)}(J)$ and the rank-selected Betti number $\tilde{\beta}_{B_{-}^{(i)}}(J)$ are related by

$$\operatorname{ps} \beta_n^{(t)}(J) = \frac{\tilde{\beta}_{B_{n,q}^{(t)}}(J)}{\prod_{i=1}^n (1-q^i)^t}.$$