

q-deformation of graphic arrangements

Tongyu Nian ¹ Shuhei Tsujie ²

Ryo Uchiumi ¹ Masahiko Yoshinaga ¹

¹The University of Osaka

²Hokkaido University of Education

Motivation

It is classically known that there are similarities between subsets of $[n]=\{1,\ldots,n\}$ and linear subspaces of \mathbb{F}_q^n , which is sometimes called the "q-analogue". We start with pointing out further similarities between chromatic polynomials for graphs and characteristic polynomials for hyperplane arrangements over finite fields. A typical example of an arrangement is the **braid arrangement** \mathcal{B}_ℓ in \mathbb{R}^ℓ whose defining polynomial is the **Vandermonde determinant**, i.e.,

$$Q(\mathcal{B}_{\ell}) = \prod_{1 \leq i < j \leq \ell} (x_j - x_i) = \begin{vmatrix} 1 & x_1 x_1^2 & \dots & x_1^{\ell-1} \\ 1 & x_2 x_2^2 & \dots & x_2^{\ell-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{\ell} & x_{\ell}^2 & \dots & x_{\ell}^{\ell-1} \end{vmatrix}.$$

The characteristic polynomial of the braid arrangement \mathcal{B}_ℓ is

$$\chi(\mathcal{B}_{\ell}, t) = t(t-1)(t-2)\cdots(t-\ell+1).$$

There are mysterious similarities between the braid arrangements and the arrangements consisting of all hyperplanes in vector spaces over finite fields. Let q be a prime power and \mathbb{F}_q the finite field of order q. Define the arrangement $\mathcal{A}_{\mathrm{all}}(\mathbb{F}_q^\ell)$ as the set of all hyperplanes in \mathbb{F}_q^ℓ . Its defining polynomial is the determinant of the Moore matrix, i.e.,

$$Q\left(\mathcal{A}_{\text{all}}(\mathbb{F}_{q}^{\ell})\right) = \prod_{i=1}^{\ell} \prod_{c_{1}, \dots, c_{i-1} \in \mathbb{F}_{q}} (c_{1}x_{1} + \dots + c_{i-1}x_{i-1} + x_{i})$$

$$= \begin{vmatrix} x_{1} & x_{1}^{q} & x_{1}^{q^{2}} & \dots & x_{1}^{q^{\ell-1}} \\ x_{2} & x_{2}^{q} & x_{2}^{q^{2}} & \dots & x_{2}^{q^{\ell-1}} \\ \vdots & \vdots & \vdots & \vdots \\ x_{\ell} & x_{\ell}^{q} & x_{\ell}^{q^{2}} & \dots & x_{\ell}^{q^{\ell-1}} \end{vmatrix}.$$

The characteristic polynomial of $\mathcal{A}_{\mathrm{all}}(\mathbb{F}_q^\ell)$ is

$$\chi\left(\mathcal{A}_{\text{all}}(\mathbb{F}_q^{\ell}), t\right) = (t-1)(t-q)(t-q^2)\cdots(t-q^{\ell-1}).$$

By formally replacing q^k in the expressions of $Q\left(\mathcal{A}_{\mathrm{all}}(\mathbb{F}_q^\ell)\right)$ and $\chi\left(\mathcal{A}_{\mathrm{all}}(\mathbb{F}_q^\ell),t\right)$ with k, we obtain the expressions for $Q(\mathcal{B}_\ell)$ and $\chi(\mathcal{B}_\ell,t)$.

Note that $\chi(\mathcal{B}_\ell,\ell)=\ell!=|\mathfrak{S}_\ell|$ and $\chi\left(\mathcal{A}_{\mathrm{all}}(\mathbb{F}_q^\ell),q^\ell\right)=(q^\ell-1)(q^\ell-q)\cdots(q^\ell-q^{\ell-1})=|GL_\ell(\mathbb{F}_q)|$. It is worth mentioning that the permutation group \mathfrak{S}_ℓ is considered as the " \mathbb{F}_1 -version" of the general linear group $GL_\ell(\mathbb{F}_q)$ [5]. For more details in the theory of hyperplane arrangements, see[2].

Proposition 1-1

Suppose $\chi(G,k)=0$ for some $k\in\mathbb{Z}_{\geq 0}.$ Then $\chi(G,j)=0$ for $0\leq j\leq k.$

There is a q-version of Proposition 1-1.

Proposition 1-2

Let $\mathcal A$ be an arrangement in $\mathbb F_q^\ell$. If $\chi(\mathcal A,q^k)=0$ for some $k\in\mathbb Z_{\geq 0}$, then $\chi(\mathcal A,q^j)=0$ for any $0\leq j\leq k$.[6]

Proposition 2-1

Let $t^{\underline{i}}$ be the falling factorial such that for each $i \in \mathbb{Z}_{>0}$, $t^{\underline{i}} := t(t-1)\cdots(t-i+1)$. Suppose $\chi(G,t) = \sum_{i=1}^{\ell} c_i t^{\underline{i}}$. Then c_i coincides with the number of stable partitions of G into i blocks, where a stable partition of G is a set partition of the vertex set such that no edge connects vertices within the same block[3].

In other words, c_i coincides with the number of *i*-dimensional subspaces in $L(\mathcal{B}_{\ell})$ that are not contained in any hyperplanes in \mathcal{A}_{G} .

Proposition 2-2

Let $\mathcal A$ be an arrangement in $\mathbb F_q^\ell$ and $t_q^i := \chi(\mathcal A_{\mathrm{all}}(\mathbb F_q^i),t) = (t-1)(t-q)\cdots(t-q^{i-1}).$ Suppose $\chi(\mathcal A,t) = \sum_{i=0}^\ell c_i t_q^i$. Then c_i is the number of i-dimensional subspaces in $\mathbb F_q^\ell$ that are not contained in any hyperplanes in $\mathcal A$.

Definitions

Definition 1

Define the **graphical arrangement** \mathcal{A}_G in \mathbb{R}^ℓ by

$$\mathcal{A}_G := \{ \{ x_i - x_j = 0 \} | \{ i, j \} \in E_G \}.$$

Note that every subarrangement of the braid arrangement \mathcal{B}_ℓ is of the form \mathcal{A}_G and it is well known that the chromatic polynomial $\chi(G,t)$ coincides with the characteristic polynomial $\chi(\mathcal{A}_G,t)$.

Definition 2

We can define a q-deformation of graphical arrangement \mathcal{A}_G^q in \mathbb{F}_q^ℓ as follows.

$$\mathcal{A}_{G}^{q} := \bigcup_{\{i_{1},\ldots,i_{r}\}} \{ \{a_{i_{1}}x_{i_{1}} + \cdots + a_{i_{r}}x_{i_{r}} = 0\} | a_{ij} \in \mathbb{F}_{q}^{\times}, j = 1, 2, \cdots, r\},$$

where $\{i_1, \ldots, i_r\}$ runs over all cliques of G.

Conjecture and Main Theorem

Conjecture 1

The characteristic polynomial of the q-deformation $\chi(\mathcal{A}_G^q,t)$ is a polynomial in q and t, such that

$$\lim_{q \to 1} \frac{\chi(\mathcal{A}_G^q, q^t)}{(q-1)^{\ell}} = \chi(G, t).$$

The proof of the conjecture is still unclear but we proved a weaker version.

Main Theorem

For any $k \in \mathbb{Z}_{\geq 0}$, and prime power q,

$$\frac{\chi(\mathcal{A}_G^q,q^k)}{(q-1)^\ell} \equiv \chi(G,k) \pmod{q-1}.$$

Results Supporting the Conjecture

Graphs can be seen as simplicial complexes with faces made by cliques. Denote this **clique complex** by Δ_G . Note that all simplicial complexes are subcomplexes of some clique complex.

Definition 3

For a simplicial complex Δ , any face $\mathcal{F}\in\Delta$ can be seen as the clique complex of some graph, say $G_{\mathcal{F}}$. The q-deformation of Δ is defined as

$$A^q_{\Delta} := \bigcup_{\mathcal{F} \in \Lambda} A^q_{G_{\mathcal{F}}}$$

Note that the q-deformation of the clique complex of graph G is the same as the q-deformation of \mathcal{A}_G . The conjecture can also be extended to the q-deformation of any simplicial complex.

Proposition 3

Let $G=([\ell],E)$ be a graph, Δ_G^1 be the 1-skeleton of the clique complex Δ_G , i.e., the subcomplex $E\cup [\ell]\subseteq \Delta_G$. Then for any edge $e\in E_G$), we have

$$\chi(\mathcal{A}^q_{\Delta^1_G},t) = \chi(\mathcal{A}^q_{\Delta^1_{G\backslash e}},t) - (q-1)\chi(\mathcal{A}^q_{\Delta^1_{G/e}},t).$$

Hence by computation, Δ^1_G satisfies the conjecture for any graph G.

Corollary 1

Let G be a triangle-free graph, easy to see $\mathcal{A}_G^g=\mathcal{A}_{\Delta_G^1}^g$, hence any triangle-free graph satisfies the conjecture.

Proposition 4

Let G be a chordal graph, then we can write $\chi(G,t)=\chi(\mathcal{A}_G,t)=(t-e_1)(t-e_2)\cdots(t-e_\ell)$. In this case,

$$\chi(\mathcal{A}_{G}^{q},t) = (t-q^{e_1})(t-q^{e_2})\cdots(t-q^{e_{\ell}}).$$

Hence satisfies the conjecture. The proof is by giving the free basis of the logarithmic vector field of the graphic arrangements [4] and the corresponding q-deformations.

Proposition 5

Let G be a graph on $[\ell]$ and $G+K_m$ be the join of graph G and the complete graph K_m . Then

$$\chi(\mathcal{A}^{q}_{G+K_{m}},t) = (t-1)(t-q)\cdots(t-q^{m-1})q^{m\ell}\chi(\mathcal{A}^{q}_{G},q^{-m}t).$$

While for the chromatic polynomial, we have

$$\chi(G + K_m, t) = t(t-1)\cdots(t-m+1)\chi(G, t-m).$$

Hence if the graph ${\cal G}$ satisfies the conjecture, the join of ${\cal G}$ with complete graphs also satisfies the conjecture.

References

- [1] Tongyu Nian, Shuhei Tsujie, Ryo Uchiumi, and Masahiko Yoshinaga. q deformation of chromatic polynomials and graphical arrangements, 2024.
- [2] Peter Orlik and Hiroaki Terao. Arrangements of hyperplanes, volume 300. Springer Science & Business Media, 2013.
- [3] R. C. Read. An introduction to chromatic polynomials. *Journal of Combinatorial Theory*, 4(1):52–71, January 1968.
- [4] Daisuke Suyama and Shuhei Tsujie. Vertex-weighted graphs and freeness of ψ -graphical arrangements. Discrete & Computational Geometry, 61(1):185–197, 2019
- [5] Jacques Tits. Sur les analogues algébriques des groupes semi-simples complexes. In Colloque d'algèbre supérieure, tenu à Bruxelles du 19 au 22 décembre 1956, Centre Belge de Recherches Mathématiques, pages 261–289. Établissements Ceuterick. Louvain. 1957.
- [6] Masahiko Yoshinaga. Free arrangements over finite field. *Proceedings of the Japan Academy, Series A, Mathematical Sciences*, 82(10):179–182. January 2007.