A new class of magic positive Ehrhart polynomials of reflexive polytopes

THE UNIVERSITY OF OSAKA Masato Konoike

FPSAC 25 at Hokkaido, Japan, July 21 – July 25, 2025

1. Introduction

 $P \subset \mathbb{R}^N$: a lattice polytope of dimension d. Suppose that $0 \in P \setminus \partial P$. Then the **dual polytope** is defined by

$$P^* := \{ y \in \mathbb{R}^N \mid \langle x, y \rangle \le 1 \text{ for all } x \in P \}.$$

If P^* is a lattice polytope, then P is called a **reflexive polytope**.

Given $n \in \mathbb{Z}_{>0}$, we set

$$E(P,n) := \left| nP \cap \mathbb{Z}^N \right|,$$

where $nP = \{n\alpha \in \mathbb{R}^N : \alpha \in P\}.$

• E(P, n) is a polynomial in n of degree d.

E(P,n) is called the **Ehrhart polynomial** of P.

$$1 + \sum_{n \ge 1} E(P, n)t^n = \frac{\sum_{i=0}^d h_i^* t^i}{(1 - t)^{d+1}}$$

We call $h^*(P,t) = \sum_{i=0}^d h_i^* t^i$ the h^* -polynomial of P. If the roots of h^* -polynomial are real, then we say that h^* -polynomial is the **real-rooted**.

$$f(n) = \sum_{i=0}^{d} a_i n^i (1+n)^{d-i}.$$

If $a_0, \ldots, a_d \ge 0$, then we call f(n) magic positive.

Theorem 1 ([2]) -

If E(P, n) is magic positive, then h^* -polynomial is realrooted.

• The Ehrhart polynomials of Zonotopes and Pitman-Stanley polytopes are magic positive.

Our goal is to present

a new polytope whose Ehrhart polynomial is magic positive!!

2. Stasheff Polytope

 $\operatorname{St}_d := \operatorname{conv}(\{\pm \mathbf{e}_i : 1 \le i \le d\} \cup \{\mathbf{e}_i + \dots + \mathbf{e}_j : 1 \le i < j \le d\}).$

 St_d^* is called the **Stasheff polytope** (associahedron).

Proposition 2 ([1]) —

For $d \ge 2$, $E(St_d^*, n)$ satisfies the following recurrence:

$$E(\mathrm{St}_d^*,n) = (2n+1)E(\mathrm{St}_{d-1}^*,n) - \frac{1}{2}n(n+1)E(\mathrm{St}_{d-2}^*,n)$$

Theorem 3 ([1])

 $E(St_d^*, n)$ is magic positive.

3. Dual of symmetric edge polytope

G: finite simple graph on [d], with edge set E(G).

The **symmetric edge polytope** $P_G \subset \mathbb{R}^d$ is defined by

$$P_G := \operatorname{conv}(\{\pm (e_v - e_w) \in \mathbb{R}^d \mid vw \in E(G)\})$$

Here, the vectors e_v are elements that form a lattice basis of \mathbb{Z}^d

- Proposition 4 -

 T_d : a tree with d vertices

 K_d : a complete graph with d vertices

 $E(P_{T_d}^*, n)$ and $E(P_{K_d}^*, n)$ are magic positive.

For any connected graph G with d vertices, the following inclusions hold:

$$P_{K_d}^* \subset P_G^* \subset P_{T_d}^*$$

Question 5 —

G: connected finite simple graph Is the $E(P_G^*, n)$ magic positive?

COUNTEREXAMPLES

 \bigcirc : $E(P_{K_{a,b}}^*, n)$ is magic positive, \times : $E(P_{K_{a,b}}^*, n)$ is not

a	2	3	4	5	6	7	8	9
2	0	0	0	0	0	0	0	×
3	0	0	0	0	0	×	×	×
4	0	0	0	0	×	×	×	×
5	0	0	0	×	×	×	×	
6	0	0	×	×	×	×		
7	0	×	×	×	×			
8	0	×	×	×				
9	×	×	×					

Theorem 6 ([1])

 C_d : a cycle of length d

We transform $E(P_{C_{d+1}}^*, n)$ into the form $E(P_{C_{d+1}}^*, n) = \sum_{j=0}^d a_j n^j (1+n)^{d-j}$. Then, the coefficients a_i and a_{d-i} are positive for i=0,1,2.

REMARK By computational experiments, $E(P_{C_d}^*, n)$ is magic positive for all $d \le 500$.

REFERENCE

[1] M. Konoike, A new class of magic positive Ehrhart polynomials of reflexive polytopes, arXiv:1107.4862v1.

[2] L. Ferroni and A. Higashitani, Examples and counterexamples in Ehrhart theory, *EMS Surveys in Mathematical Sciences*, 2024