

Inversions in Parking Functions

Jennifer Elder² Kyle Celano ¹

Kimberly P. Hadaway^{* 3} Pamela E. Harris ⁴

Amanda Priestley ⁵

Gabe Udell ⁶

¹Wake Forest University

²Missouri Western State University

³Iowa State University

⁴University of Wisconsin-Milwaukee

⁵The University of Texas at Austin

⁶Cornell University

Abstract

In this poster, we obtain a q-exponential generating function for inversions on parking functions through a direct bijection to labeled rooted forests. Moreover, we obtain an expression for the total number of inversions across all parking functions via a probabilistic approach. Finally, by applying these techniques to unit interval parking functions (defined by Hadaway 2021) we give analogous results.

What is a parking function?

- * A set of n cars want to park in n spots on a one-way street.
- * Cars enter one at a time, and park in the first available spot on or after their preference. If they don't find a spot, then they drive away.
- * If all cars park, then the set of preferences is a parking function. Let PF_n be the set of all parking functions of length n.

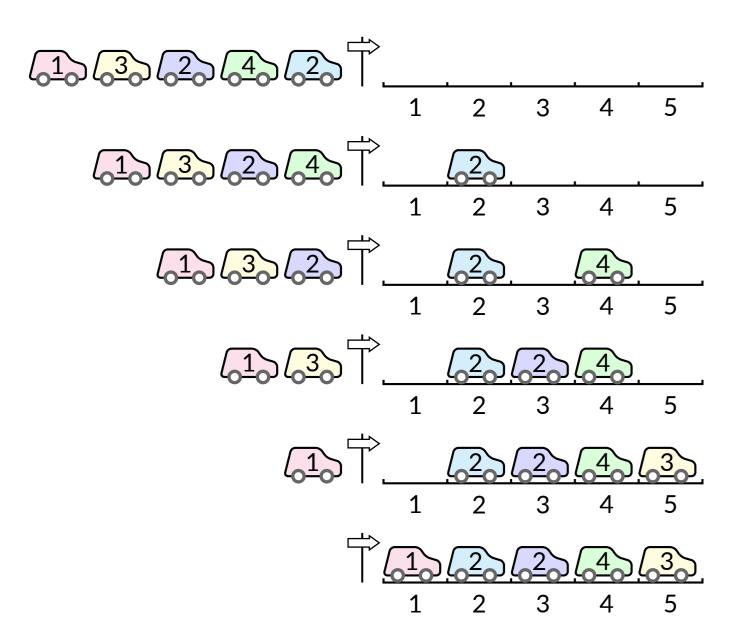


Figure 1. An example of the parking process with preferences (2, 4, 2, 3, 1).

Other definitions

- * The outcome permutation $\pi(\alpha)$ is defined by setting $\pi(\alpha)(j) = i$ if car i parks in spot j.
- * A unit interval parking function of length n is a parking function $\alpha \in PF_n$ such that $\pi(\alpha)^{-1}(i) - \alpha_i \le 1$ for all $i \in [n]$. Let UPF_n denote the set of unit interval parking functions of length n.
- * For a word $w \in \mathbb{P}^n$, an inversion is a pair (i,j) of integers in [n] such that i < j and $w_i > w_j$. We denote the set of inversions of a word w by Inv(w) and let inv(w) = |Inv(w)|.

Labeled rooted forests

- * A labeled rooted forest is a rooted forest is made up of rooted trees in which every vertex is given a unique integer.
- * The subtrees of a labeled rooted tree T are labeled rooted subtrees T_1, T_2, \ldots, T_k such that $r(T_i)$ is adjacent in T to r(T) for each $i \in [k]$, where we order the trees so that $r(T_1) < r(T_2) < \cdots < r(T_k).$
- * Let T be a labeled rooted tree with root r. The preorder traversal permutation w(T) of T is defined recursively by setting

$$w(T) = \begin{cases} r(T) & \text{if } T \text{ is a single vertex } r(T) \\ r(T) \cdot w(T_1)w(T_2) \cdots w(T_k) & \text{if } T \text{ has subtrees } T_1, T_2, \dots, T_k, \end{cases}$$

where $u \cdot v$ denote concatenation of words u and v.

* Suppose $F \in \mathcal{F}_n$. The pair (i,j) of integers $i,j \in [n]$ is called a parental preorder inversion of F provided i < j and $w_F^{-1}(p(i)) > w_F^{-1}(p(j))$. We denote the number of parental preorder inversions of F by pinv(F).

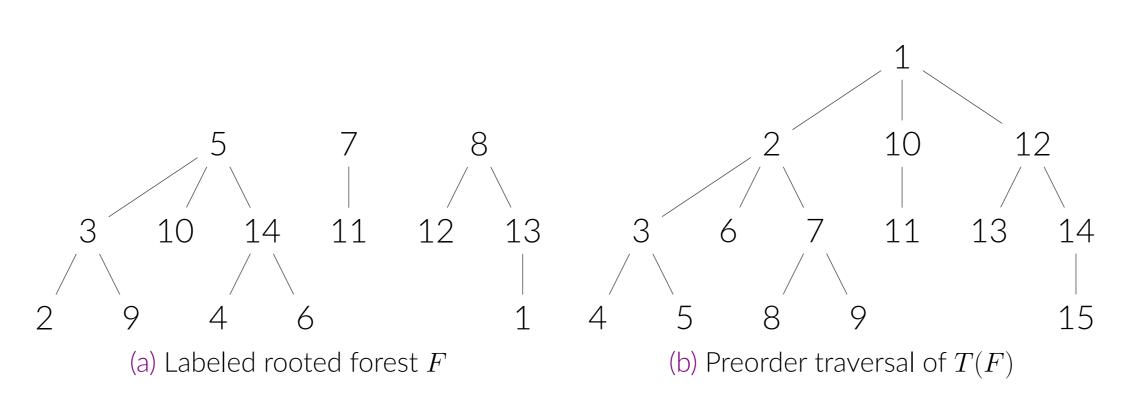


Figure 2. w(F) = (0, 5, 3, 2, 9, 10, 14, 4, 6, 7, 11, 8, 12, 13, 1) $\rho(F) = (14, 3, 2, 7, 1, 7, 1, 1, 3, 2, 10, 12, 12, 2)$

Proposition

For all
$$n \geq 1$$
, $PF_n(q) = \sum_{F \in \mathcal{F}_n} q^{\text{pinv}(F)}$.

Future work

- * For other families of parking functions, find nice expressions for their inversion generating functions. Furthermore, determine if there is a natural \mathfrak{S}_n -action on the family and determine its Frobenius character.
- * Investigate generating functions for other word statistics on parking functions and their subsets and generalizations.

Total number of inversions

Theorem

Let $W \subset \mathbb{P}^n$ be an \mathfrak{S}_n -invariant set of words of positive integers. Then, we have the following expectations:

(a)
$$\mathbb{E}_W[\text{inv}] = \binom{n}{2} \mathbb{P}_W(\text{des}_1 = 1),$$

(b)
$$\mathbb{E}_W [\text{des}] = (n-1)_W (\text{des}_1 = 1)$$
, and

(c)
$$\mathbb{E}_W[\text{inv}] = \frac{n}{2} \mathbb{E}_W[\text{des}].$$

Theorem (Schumacher)

For all $n \geq 1$, we have that

$$\sum_{\alpha \in PF_n} \operatorname{des}(\alpha) = \binom{n}{2} (n+1)^{(n-2)}.$$

Corollary

For $n \geq 1$, the total number of inversions across all parking functions is

$$\sum_{\alpha \in PF_n} \operatorname{inv}(\alpha) = \frac{n(n+1)^{n-2}}{2} \binom{n}{2}.$$

Let $(\operatorname{Fub}_n)_{n\geq 1}$ denote the Fubini numbers.

Theorem

For $n \geq 1$, we have

$$\sum_{\alpha \in \mathrm{UPF}_n} \mathrm{des}(\alpha) = \sum_{\alpha \in n} \mathrm{des}(\alpha) = \frac{n-1}{2} (\mathrm{Fub}_n - \mathrm{Fub}_{n-1}).$$

Corollary

For $n \ge 1$, we have

$$\sum_{\alpha \in \mathrm{UPF}_n} \mathrm{inv}(\alpha) = \sum_{\alpha \in n} \mathrm{inv}(\alpha) = \frac{n(n-1)}{4} (\mathrm{Fub}_n - \mathrm{Fub}_{n-1}).$$

More Information

Find paper posted soon on ArXiv or my website: www.kimberlyphadaway.com

