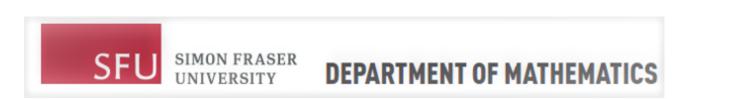
Fundamental groups of moduli spaces of real weighted stable curves



Haggai Liu

Jake Levinson

Université de Montréal

Simon Fraser University

Summary

- Hassett's space of weighted stable curves $\overline{M_{0,\mathcal{A}}}$: a blowdown of $\overline{M_{0,n+1}}$.
- We show how to tile $\overline{M_{0,\mathcal{A}}}(\mathbb{R})$ by **products of permutahedra** (Figures 1-3)
- When \mathcal{A} is S_n -symmetric: we describe the ordinary and S_n -equivariant fundamental groups of $\overline{M_{0,\mathcal{A}}}(\mathbb{R})$, called weighted cactus groups
- Prior work [1]: tiling of $\overline{M_{0,n+1}}(\mathbb{R})$ by cubes, presentation of (unweighted) cactus group

Main results. Let $\mathcal{A} = (a_1, \dots, a_{n+1})$ be a weight vector with $a_{n+1} = 1$.

- (1) $\overline{M_{0,\mathcal{A}}}(\mathbb{R})$ has a **cell decomposition** indexed by rooted trees τ , compatible with the blowdown maps. Each cell $\overline{W_{\tau}}$ is a product of permutahedra.
- (2) Suppose $\mathcal{A} = \mathcal{A}(a) := (\frac{1}{a}, \dots, \frac{1}{a}, 1)$ and $a \geq 3$. The weighted cactus group J_n^a is obtained from the unweighted cactus group by deleting generators and adding **braid relations**.

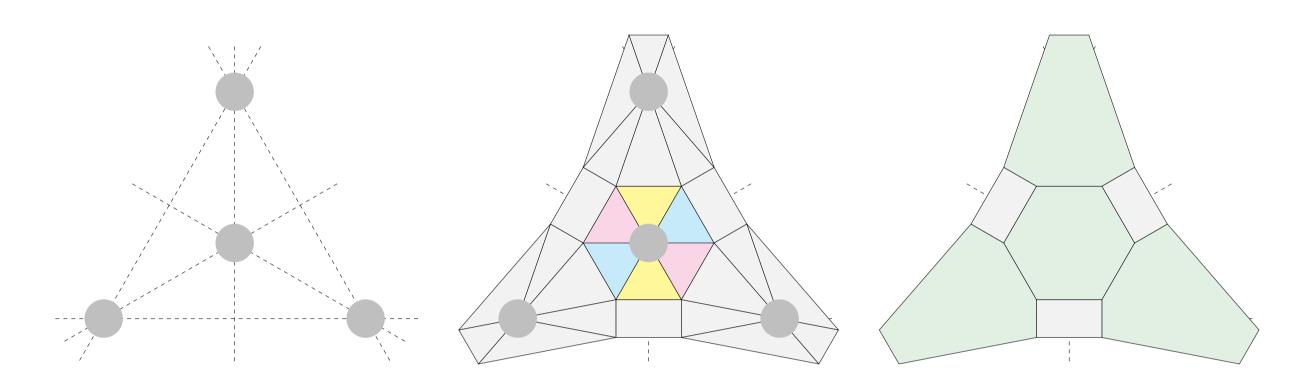


Figure 1: Left: $\overline{M_{0,5}}(\mathbb{R})$ is the blowup of \mathbb{RP}^2 at four points. Center: Decomposition into 15 regions homeomorphic to squares. **Right:** Blowing down and merging cells of $\overline{M_{0,\mathcal{A}(3)}}(\mathbb{R}) \cong \mathbb{RP}^2$ into permutahedra (hexagons).

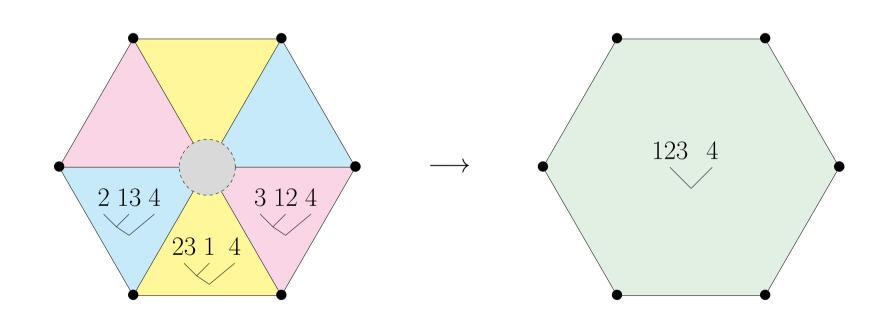


Figure 2: Detail of Figure 1, a local picture of the blowdown $\overline{M_{0,\mathcal{A}(2)}}(\mathbb{R}) \to \overline{M_{0,\mathcal{A}(3)}}(\mathbb{R})$, merging three regions homeomorphic to squares into a hexagon Π_3 . Each region is labeled by a 2-stable or 3-stable tree. Note: on the inner circle, antipodal points are identified.

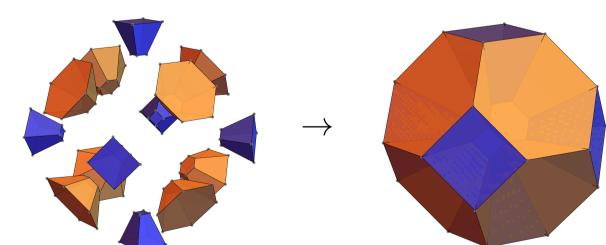


Figure 3: Analog of Figure 2 in three dimensions, blowing down three hexagonal prisms $\Pi_2 \times \Pi_3$ and three cubes $\Pi_2 \times \Pi_2 \times \Pi_2$ into a Π_4 .

Rooted trees

An a-stable rooted tree τ on the set [n] is a rooted tree with

- (i) leaves labeled by subsets $A_i \subseteq [n]$ with $|A_i| \leq a$, forming a set partition of [n];
- (ii) for each $v \in \tau$, an ordering of the children of v, up to reversal,

such that

- (iii) for each $v \in \tau$, the union of all A_i in the subtree rooted at v has > a elements.
- If b > a, the **compression** of τ is the b-stable tree $\varpi_{b,a}(\tau)$ given by replacing each subtree violating (iv) by the union of its leaves.

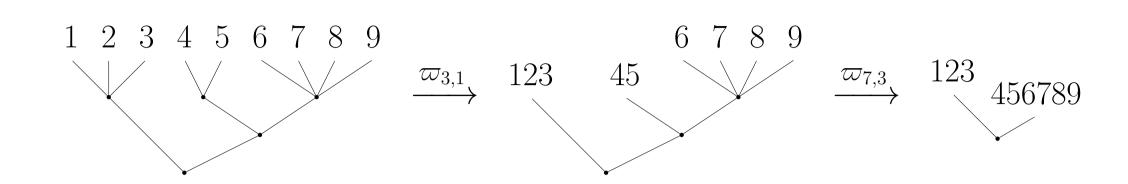


Figure 4: Compressing a 1-stable tree to a 3-stable tree, then to a 7-stable tree.

Permutahedra

- For each n, the **permutahedron** is $\Pi_n := \text{conv}(\sigma : \sigma \in S_n) \subseteq \mathbb{R}^n$.
- Faces of Π_n are indexed by **ordered set partitions** of [n]. The face corresponding to $A_{\bullet} = (A_1, \dots, A_k) \text{ is } \Pi_{A_{\bullet}} \cong \Pi_{|A_1|} \times \dots \times \Pi_{|A_k|}.$

Moduli spaces of stable curves

- Let $\mathcal{A} = (a_1, \dots, a_{n+1}) \in (0, 1]^{n+1}$ with $a_{n+1} = 1$
- An \mathcal{A} -stable (n+1)-marked curve of genus zero is a union of copies of \mathbb{P}^1 with n+1labeled points, satisfying certain "stability" conditions.

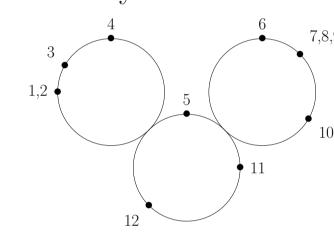


Figure 5: An \mathcal{A} -stable curve, where $\mathcal{A} = \mathcal{A}(3) = (\frac{1}{3}, \dots, \frac{1}{3}, 1)$.

- Hassett's moduli space $\overline{M_{0,\mathcal{A}}}(\mathbb{R})$ parametrizes isomorphism classes of $(C;x_{\bullet})$ with real marked points and nodes. It is a blowdown of $\overline{M_{0,n+1}}(\mathbb{R})$ and a blowup of \mathbb{RP}^{n-2} .

Distance algorithm and constructing the cell decomposition (1)

We associate to each $(C; x_{\bullet}) \in \overline{M_{0,\mathcal{A}}}(\mathbb{R})$ a **tree of distances** $\tau^{\text{dist}}(C; x_{\bullet})$. This decomposes the moduli space into (locally closed) cells

$$W_{\tau} = \{ (C; x_{\bullet}) : \tau^{\operatorname{dist}}(C; x_{\bullet}) = \tau \}.$$

Distance algorithm (see Figure 6; cf. [2]).

- 1. If $C = \mathbb{P}^1$, set $x_{n+1} = \infty$. Join up all nearest neighbors. Repeat until all neighbors are joined. 2. (If C has multiple components, repeat on each component.)
- 3. Compress the resulting tree to an a-stable tree.

Cell decomposition of $\overline{M_{0,\mathcal{A}}}(\mathbb{R})$. Suppose τ has leaves labeled A_1,\ldots,A_k and e internal edges. Then the (closure of the) cell corresponding to τ has the form

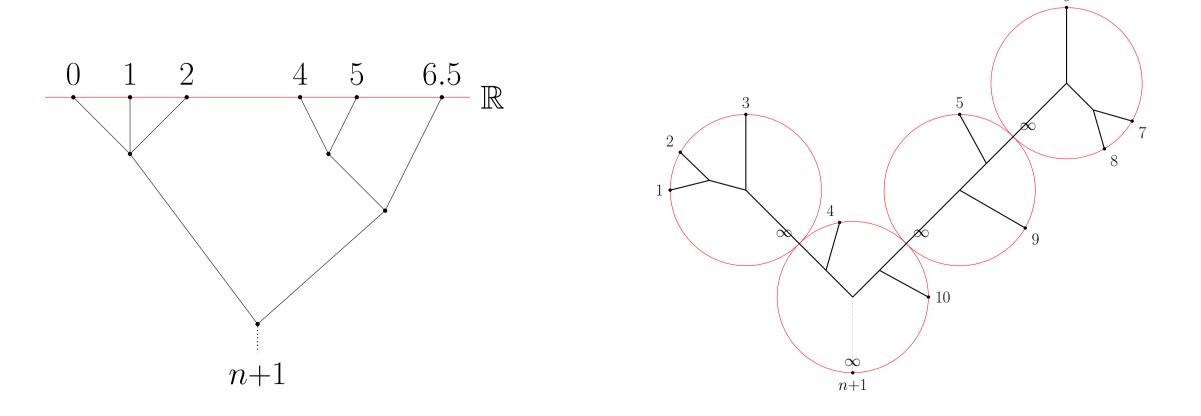


Figure 6: Left: 1-stable tree of distances from $x_{\bullet} = (0, 1, 2, 4, 5, 6.5, \infty)$ on $C = \mathbb{RP}^1$ **Right:** Tree of distances on a curve with 4 components.

Equivariant fundamental groups and proof of (2)

Let G be a finite group acting on X a space, $x_0 \in X$. The G-equivariant fundamental **group** is

 $\pi_1^G(X, x_0) = \{(g, \gamma) : g \in G, \gamma \text{ a homotopy class of paths from } x_0 \text{ to } gx_0\},$

with group law $(g, \gamma) * (g', \gamma') = (gg', \gamma * g\gamma')$. There is a short exact sequence

$$1 \to \pi_1(X, x_0) \to \pi_1^G(X, x_0) \to G \to 1.$$

For $\overline{M_{0,n+1}}(\mathbb{R})$, S_n acts by permuting the marked points, fixing x_{n+1} . The **cactus group**

$$J_n = \pi_1^{S_n}(\overline{M_{0,n+1}}(\mathbb{R}))$$

is generated by "interval-reversing" elements $s_{p,q}$ for $1 \le p < q \le n$, with **cactus relations**:

- (i) (involutions) $s_{p,q}^2 = 1$ for all p, q,
- (ii) (disjoint intervals) $s_{p,q}s_{k,l} = s_{k,l}s_{p,q}$ when p < q < k < l:

(iii) (nested intervals) $s_{p,q}s_{k,l} = s_{p+q-l,p+q-k}s_{p,q}$ when $p \le k < l \le q$:

Presentation of the weighted cactus group. Let $\mathcal{A} = (\frac{1}{a}, \dots, \frac{1}{a}, 1)$ with $a \geq 3$. The weighted cactus group $J_n^a := \pi_1^{S_n}(\overline{M_{0,\mathcal{A}}}(\mathbb{R}))$ has the generating set

$${s_{p,q}: 1 \le p < q \le n \text{ and } q - p \ge a \text{ or } q = p + 1},$$

with relations given by the cactus relations (i)-(iii) above, along with

(iv) (braid relations) $(s_{p,p+1}s_{p+1,p+2})^3 = 1$ for all p.

Proof. The 2-cells of the permutahedral tiling are all

$$[-1,1]^2$$
, $[-1,1] \times \Pi_2$, $\Pi_2 \times \Pi_2$, or Π_3 .

The first three are squares and induce the (four-term) cactus relations. The hexagon Π_3 induces the (six-term) braid relation (Figure 7).

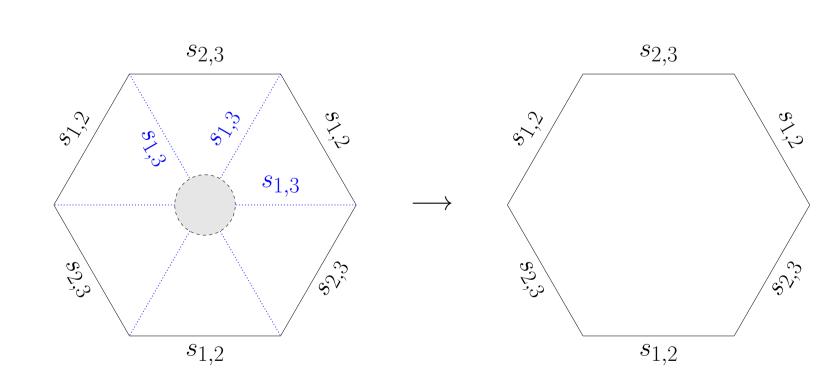


Figure 7: Showing how merging cells eliminates $s_{1,3}$ and introduces a braid relation.

References

- [1] M. Davis, T. Januszkiewicz, and R. Scott, Fundamental groups of blow-ups, Adv. Math. 177 (2003), no. 1, 115–179. MR 1985196
- [2] Aleksei Ilin, Joel Kamnitzer, Yu Li, Piotr Przytycki, and Leonid Rybnikov, The moduli space of cactus flower curves and the virtual cactus group, 2024, arXiv:2308.06880.
- [3] Jake Levinson and Haggai Liu, Fundamental groups of moduli spaces of real weighted stable curves, 2025, arXiv:2503.23253.