Centralizers in the plactic monoid

Bruce E. Sagan ¹ Alexander N. Wilson ²

Notation

- $\mathbb{P} = \{1, 2, 3, \ldots\}, \mathbb{N} = \mathbb{P} \uplus \{0\}, \text{ and } \mathbb{P}^* \text{ is the set of words of positive integers.}$
- ullet Given a row R of a tableau and a condition I on integers we let

R(I) = multiset of elements of R satisfying I.

- Given words u, w, let $u \equiv w$ denote that u and w are Knuth equivalent [1].
- Given a word w, let P(w) be the RSK insertion tableau of w.

Centralizer of u

Given a word $u \in \mathbb{P}^*$, our primary object of study will be the *centralizer of* u in the plactic monoid which is

$$C(u) = \{ w \mid uw \equiv wu \},\$$

or equivalently

$$C(u) = \{ w \mid P(uw) = P(wu) \}.$$

In particular, we wish to characterize C(u) for certain u and also consider the enumerative properties of the integers

$$c_{n,m}(u) = \#\{w \in C(u) \mid \#w = n \text{ and } \max w \le m\}.$$

Crystal motivation

This project was motivated in part by work of the second author and Nate Harman about a $\mathfrak{gl}_m \times \mathfrak{gl}_n$ -crystal structure on lexicographic bitableaux with entries in $[m] \times [n]$. See below an example of how such a \mathfrak{gl}_n -crystal operator would act by raising the second entry of a box by extracting a reading word.

233.231.1

)((.)(1.1

Bitableau Preprint

The goal is then a \mathfrak{gl}_m -crystal structure that modifies the first entry of a box in a way that commutes with the a I --crystal structure. Changing the first entry will move a letter in a reading word to another location within the word, and the crystal structures commute if the new reading word is Knuth equivalent to the old. The question of when moving a single letter in a word wouldn't change the Knuth class inspired this project on plactic monoid centralizers.

General strategy

Our principal tool is to compare the computation of P(wu) using RSK with the computation of P(uw) using jdt. In the former, the elements of u are inserted into P(w) using the usual RSK bumping procedure. In the latter, a skew tableau is formed with P(u) in the southwest and P(w) in the northeast. The tableau is then brought to left-justified shape using jdt slides.

Lemma 1. Let $a \neq b$ be distinct positive integers and let $w \in \mathbb{P}^*$. Then

$$\alpha_b(P(wa)) \leq \alpha_b(P(w)) \leq \alpha_b(P(aw)).$$

where $\alpha_b(P)$ is a weak composition recording the number of instances of b in each row of P.

Figure 1. Jeu de taquin slides yielding the same result as RSK-insertion of a 2 demonstrate that $322112 \in C(2)$ (as well as all words Knuth equivalent to this word).

$$|u| = 1$$

When |u|=1, we can completely characterize elements w of the centralizer C(u) in terms of their insertion tableaux P(w).

Theorem 1. Suppose u consists of a single integer which we also denote by u. Also, use R_1, R_2, \ldots, R_l to denote the rows of P = P(w). Then the set C(u) is all w such that P = P(w) satisfies

- (a) $\max R_1 \leq u$, and
- (b) for i > 1 we have

$$\#R_i(< u) = \#R_{i+1}(\le u).$$

Theorem 2. If |u| = 1 then

$$C(u) = \{w \mid \text{ every column of } P = P(w) \text{ contains a } u\}.$$

$$|u| = 2$$
 or $|u| = 3$

Theorem 3. We have that $w \in C(12)$ if and only if all columns C of P(w) satisfy the following two conditions.

- (a) If there is a singleton column, C, then C is a singleton 1-column or a singleton 2-column, and both types of columns must exist.
- (b) If #C > 2 then C must contain both 1 and 2.

Theorem 4. We have that $w \in C(212)$ if and only if all columns C of P(w) satisfy the following two conditions.

- (a) All singleton columns are singleton 2-columns.
- (b) If #C > 2 then C must contain both 1 and 2.

Longer u

We can show that, interestingly, when u consists of a single element a, the centralizer $C(a^k)$ does not depend on k.

Theorem 5. If $a, k \in \mathbb{P}$ then

$$C(a^k) = C(a).$$

There is another class of words that have a particularly nice characterization of their centralizers.

Theorem 6. We have $w \in C(m(m-1)...1)$ if and only if P = P(w) satisfies

$$\max R_i \le m$$
 for all $1 \le i \le m$

where R_i is the *i*th row of P.

Enumeration

Using Stanley's theory of \mathfrak{P} -partitions (see [2, Section 7.4] or [3, Section 3.15]), we show that under certain conditions, $c_{n,m}(u)$ is given by a polynomial.

Theorem. If $n \geq k$ then $c_{n,m}(k(k-1)\dots 1)$ is a polynomial in m of degree n-k with leading coefficient 1/(n-k)!.

Theorem. Suppose n is fixed and $m \geq n$. Then we have the following polynomial expansions.

$$\begin{split} c_{2,m}(1) &= \binom{m}{1}, \\ c_{3,m}(1) &= \binom{m}{1} + \binom{m}{2}, \\ c_{4,m}(1) &= \binom{m}{1} + 4\binom{m}{2} + \binom{m}{3}, \\ c_{5,m}(1) &= \binom{m}{1} + 8\binom{m}{2} + 13\binom{m}{3} + \binom{m}{4}, \\ c_{6,m}(1) &= \binom{m}{1} + 18\binom{m}{2} + 48\binom{m}{3} + 41\binom{m}{4} + \binom{m}{5}, \\ c_{7,m}(1) &= \binom{m}{1} + 33\binom{m}{2} + 178\binom{m}{3} + 262\binom{m}{4} + 131\binom{m}{5} + \binom{m}{6}, \\ c_{8,m}(1) &= \binom{m}{1} + 68\binom{m}{2} + 549\binom{m}{2} + 1480\binom{m}{4} + 1405\binom{m}{5} + 428\binom{m}{6} + \binom{m}{7}. \end{split}$$

(Note that Catalan — 1 appears on the diagonal)

Open problems and conjectures

Stability conjecture. Suppose $u \in \mathbb{P}^*$.

(a) There is a $K \in \mathbb{P}$ such that for k > K we have

$$C(u^k) \subseteq C(u^{k+1}).$$

(b) There is a $L \in \mathbb{P}$ such that for k > L we have

$$C(u^k) = C(u^{k+1}).$$

We have verified (a) computationally using Sage Math for $u \in [m]^n$ and $w \in [5]^l$ where m+n < 10 and 2 < l < 6. Note that except in the particular case that u=12345 where K=3, for all other words u checked, we can take K=1. In support of (b), the containments verified under these conditions become equalities for $k \geq 4$.

Unimodality conjecture. Fix n and write

$$c_{n,m}(1) = \sum_{k=0}^{n-1} a_k {m \choose k}$$

for certain scalars a_k (depending on n). We have the following

- (a) $a_0 = 0$, $a_1 = 1$.
- (b) $a_k \in \mathbb{P}$ for all $k \in [n-1]$.
- (c) The sequence a_1,a_2,\ldots,a_{n-1} is log-concave and hence (assuming (b)) unimodal with maximum at $k = \lceil n/2 \rceil$

References

- [1] Donald F. Knuth. Permutations, matrices, and generalized Young tableaux. Pacific J. Math., 34:709-727, 1970.
- [2] Bruce E. Sagan. Combinatorics: the art of counting, volume 210 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, [2020] @2020.
- [3] Richard P. Stanley. Enumerative combinatorics. Volume 1, volume 49 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 2012.