

A geometric interpretation and skewing formula for the Delta Theorem

Maria Gillespie ¹

¹Colorado State University

Eugene Gorsky²

²UC Davis ³Universität Wien + U North Texas

Sean Griffin ³

Abstract

Our main results are:

- A skewing identity directly relating the Rational Shuffle Theorem concerning $E_{K,k}\cdot 1$ to the Delta Theorem concerning $\Delta'_{e_{k-1}}e_n$.
- Both a combinatorial and an algebraic proof of the skewing identity.
- A **geometric interpretation** of both symmetric functions as the bigraded S_n action on the homology of a variety.

Background: A tale of two operators

Give combinatorial formulas for the evaluations of two complicated operators on symmetric functions $\mathrm{Sym}_{q,t}$:

- $E_{kn,km}$ raises the degree of a symm. function by kn, called an elliptic Hall algebra operator.
- $\Delta'_{e_{k-1}}$ preserves the degree of a symm. function and scales the **Macdonald basis** \widetilde{H}_{μ} .

Rational Shuffle Thm [M]

$$E_{kn,km} \cdot 1 = (-1)^{k(m+1)} \sum_{P \in \text{WLD}_{kn,km}} q^{\text{dinv}(P)} t^{\text{area}(P)} x_P. \tag{1}$$

The Rational Shuffle Thm was conjectured by Bergeron–Garsia–Levin–Xin and proven by Mellit. Note that when m=1 the sign of the RHS is positive, and the slope is an integer.

Example: For n = 3, m = 1 and k = 3,

$$\operatorname{dinv}(P) = 2$$

$$\operatorname{area}(P) = 1$$

$$x_P = x_1 x_2 x_3^2 x_4 x_6 x_7^2 x_9$$

Delta Theorem (Fall version) [DM,BHMPS]

$$\Delta'_{e_{k-1}} e_n = \sum_{P \in \text{WLD}_{n,k}^{\text{fall}}} q^{\text{dinv}(P)} t^{\text{area}^-(P)} x_P.$$
(2)

The Delta Thm was conjectured by Haglund-Remmel-Wilson and proven by D'Adderio-Mellit and independently by Blasiak-Haiman-Morse-Pun-Seelinger.

Example: For n = 5 and k = 3,

$$\operatorname{dinv}(P) = 2$$

$$\operatorname{area}^{-}(P) = 1$$

$$x_P = x_1 x_2 x_3^2 x_4$$

Skewing identity

The Rational Shuffle Thm and Delta Thm are directly linked by the following skewing identity.

Main Theorem 1

Let
$$\mu=(k-1,\ldots,k-1)=(k-1)^{n-k}$$
, a rectangular partition with $n-k$ parts. Then
$$\Delta'_{e_{k-1}}e_n=s_\mu^\perp(E_{k(n-k+1),k}\cdot 1).$$

Here, s_{μ}^{\perp} is the operator adjoint to multiplication by the Schur function s_{μ} .

Example: (n = 3, k = 2)

$$(1+q+t)s_{21}+(q+t+q^2+qt+t^2)s_{111}=s_{(1)}^{\perp}(s_{22}+(q+t)s_{211}+(q^2+qt+t^2)s_{1111}).$$

Algebraic proof of skewing identity

Let $H_{q,t}^k$ be the "raising" operator on symmetric rational functions in finitely many variables $\varphi(x_1,\ldots,x_k)$ given by

$$H_{q,t}^{k}(\varphi) = \sum_{w \in S_{k}} w \left(\frac{\varphi(x) \prod_{i < j} (1 - qtx_{i}/x_{j})}{\prod_{i < j} (1 - x_{j}/x_{i})(1 - qx_{i}/x_{j})(1 - tx_{i}/x_{j})} \right).$$

It follows from work of Negut that

$$\omega(E_{k(n-k+1),k}\cdot 1)(x_1,\ldots,x_k) = H_{q,t}^k \left(\frac{x_1^{n-k+1}\cdots x_k^{n-k+1}}{\prod(1-qtx_i/x_{i+1})}\right)_{\text{pol}}.$$
 (4)

Here f_{pol} is the result of expanding f into rational characters of GL_k (sums of $(x_1 \cdots x_k)^{-m} s_{\lambda}$), then truncating the sum to only polynomial characters (sums of s_{λ} with no denominator).

Similarly, it follows from BHMPS that

$$\omega \Delta'_{e_{k-1}} e_n(x_1, \dots, x_k) = H_{q,t}^k \left(\frac{x_1 \cdots x_k h_{n-k}(x_1, \dots, x_k)}{\prod (1 - qt x_i / x_{i+1})} \right)_{\text{pol}}.$$
 (5)

There is no loss of information by truncating to k variables since all symm. functions involved can be recovered from truncating to x_1, \ldots, x_k .

We show that $s_{i,t}^{\perp}$ applied to the RHS of (4) gives the RHS of (5). This proves (3).

Combinatorial proof of skewing identity

We give a combinatorial proof that when m=1, applying s_{μ}^{\perp} to the RHS of (1) is equal to the RHS of (2) (with n replaced by n-k+1 in (1)). Abbreviate

CombShuff := (RHS of (1) at
$$m=1$$
)
$$= \sum_{P \in \mathrm{WLD}_{k(n-k+1),k}} q^{\mathrm{dinv}(P)} t^{\mathrm{area}(P)} x_P,$$

$$\mathrm{Comb} \Delta \coloneqq (\mathrm{RHS of (2)})$$

$$= \sum_{P \in \mathrm{WLD}_{n,k}^{\mathrm{fall}}} q^{\mathrm{dinv}(P)} t^{\mathrm{area}^{-}(P)} x_P.$$

We show $Comb\Delta = s_{(k-1)^{n-k}}^{\perp}(CombShuff)$ in steps as follows:

- 1. The identity is equivalent to $\langle h_{\nu}, \mathsf{Comb}\Delta \rangle = \langle h_{\nu} s_{(k-1)^{n-k}}, \mathsf{CombShuff} \rangle$.
- 2. Use Jacobi-Trudy identity to expand

$$s_{(k-1)^{n-k}}=\det(h_{k-1+i-j})_{i,j}=\sum_{\alpha \text{ allowable}}(-1)^{\mathrm{sgn}(\alpha)}h_{\alpha}$$
, so step 1 is equivalent to

$$\langle h_{\nu}, \mathsf{Comb}\Delta \rangle = \sum_{\substack{\alpha \text{ allowable} \\ P \in \mathsf{WLD}^{\mathsf{fall}}_{n,k} \\ \mathsf{type}(P) = \nu}} (-1)^{\mathrm{sgn}(\alpha)} \langle h_{\nu,\alpha}, \mathsf{CombShuff} \rangle$$

$$\sum_{\substack{\alpha \text{ allowable} \\ \alpha \text{ allowable}}} (-1)^{\mathrm{sgn}(\alpha)} \sum_{\substack{P \in \mathsf{WLD}_{k(n-k+1),k} \\ \mathsf{type}(P) = (\nu,\alpha)}} q^{\mathrm{dinv}(P)} t^{\mathrm{area}(P)} t^{\mathrm{area}(P)}$$

3. We construct a sign-reversing involution on the objects on the RHS which changes the sign of α . We then give a weight-preserving bijection between the fixed points and the terms of the LHS.

For example, when $n=5, k=3, \nu=(1,1,2,1), \alpha=(0,1,2,0,1)$, the fixed-point of type (ν,α) on the right becomes the fall-starred labeling of type ν on the left after deleting the α labels (meaning 5,6,7,8,9) and expanding the columns:

Geometric interpretation

We explain how both the Rational Shuffle Thm and Delta Thm can be interpreted geometrically in terms of affine Springer fibers. We then show how a **geometric skewing identity** relates the two, thus giving a geometric interpretation of the skewing identity (3).

Affine flag varieties

Let $\mathcal{O} = \mathbb{C}\llbracket \epsilon \rrbracket$ and $K = \mathbb{C}(\!(\epsilon)\!)$.

A lattice is a \mathcal{O} -submodule of K^n of rank n, such as $\Lambda = \mathcal{O}\{e_1 + \epsilon^{-1}e_3, \epsilon e_2, e_3, \epsilon^2 e_4, \epsilon^{-1}e_5\} \subset K^5$. A complete flag of lattices Λ_{\bullet} is $\Lambda_0 \supset \Lambda_1 \supset \cdots \supset \Lambda_{n-1} \supset \Lambda_n = \epsilon \Lambda_0$ with $\dim_{\mathbb{C}}(\Lambda_i/\Lambda_{i+1}) = 1$.

The affine flag variety is $\widetilde{Fl}_n := \{\Lambda_{\bullet} \text{ complete flags in } K^n\}.$

 \widetilde{Fl}_n has infinitely many connected components indexed by $\pi_1(GL_n) \cong \mathbb{Z}$.

Define the **positive normalized part** of \widetilde{Fl}_n to be

$$\widetilde{Fl}_n^{+,0} := \{ \Lambda_{\bullet} \in \widetilde{Fl}_n \mid \Lambda_0 \subset \mathcal{O}^n, \Lambda_0 \notin \epsilon \mathcal{O} \oplus \mathcal{O}^{n-1} \}.$$

Affine Springer fibers

Given $\gamma \in \mathfrak{gl}_n K$ such that $\lim_{m\to\infty} \gamma^m = 0$, its **affine Springer fiber** is

$$\widetilde{Fl}_{\gamma} := \{ \Lambda_{\bullet} \in \widetilde{Fl}_n \mid \gamma \Lambda_i \subset \Lambda_i \}.$$

By work of Lusztig, there is an action of S_n (restricted from the affine symmetric group) on the Borel-Moore homology $H_*(\widetilde{Fl}_n)$.

Take
$$\gamma = \begin{pmatrix} 0 & \epsilon^2 \\ \epsilon I_{n-1} & 0 \end{pmatrix}$$

Theorem (Hikita) For the particular γ chosen above,

$$\operatorname{grFrob}(H_*(\widetilde{Fl}_{\gamma});q,t) = \omega \circ \operatorname{rev}_q \nabla e_n.$$

Here, ∇e_n is the n=k case of both (1) and (2), $\nabla e_n=\Delta'_{e_{n-1}}e_n=E_{n,n}\cdot 1$.

(Technically, Hikita works in $SL_n(K)/SL_n(\mathcal{O})$ not $GL_n(K)/GL_n(\mathcal{O})$)

Delta-Affine Springer fibers

Let
$$\gamma = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \epsilon I_{k-1} & 0 \\ I_{k(n-k)} & 0 & 0 \end{pmatrix}$$
 .

Main Theorem 2 We have

$$\operatorname{grFrob}\left(H_*\left(\widetilde{Fl}_{\gamma}^{+,0}\right);q,t\right) = \omega \circ \operatorname{rev}_q(E_{k(n-k+1),k}\cdot 1).$$

Given a composition $\alpha = (\alpha_1, \dots, \alpha_l)$, let Fl_{α} be the corresponding **partial affine flag variety** of flags such that $\dim_{\mathbb{C}}(\Lambda_i/\Lambda_{i+1}) = \alpha_i$.

Given a tuple of partitions $\vec{\lambda} = (\lambda^1, \dots, \lambda^l)$ with $\lambda^i \vdash \alpha_i$, define

$$BM_{\vec{\lambda},\gamma} := \{ \Lambda_{\bullet} \in \widetilde{Fl}_{\alpha} \mid \gamma \Lambda_i \subset \Lambda_i, \ \mathrm{JT}(\gamma|_{\Lambda_i/\Lambda_{i+1}}) \leqslant \lambda^i \}.$$

Main Theorem 3 For $\vec{\lambda} = ((n-k)^{k-1}, (1), (1), \dots, (1))$, we have

$$\operatorname{grFrob}\left(H_*\left(BM_{\vec{\lambda},\gamma}^{+,0}\right);q,t\right) = \omega \circ \operatorname{rev}_q(\Delta_{e_{k-1}}'e_n).$$

The proof of Theorem 3 relies on combining Theorems 1 and 2 with a **geometric skewing identity** which we prove using work of Borho and MacPherson.

[BHMPS] J. Blasiak, M. Haiman, J. Morse, A. Pun, and G. H. Seelinger. A proof of the extended delta conjecture. Forum Math. Pi, 11:Paper No. e6, 28, 2023.

[DM] M. D'Adderio and A. Mellit. A proof of the compositional Delta conjecture. Adv. Math., 402:108342, 2022. [H] T. Hikita. Affine Springer fibers of type A and combinatorics of diagonal coinvariants. Adv. Math., 263:88–122, 2014

[M] A. Mellit. Toric braids and (m, n)-parking functions. Duke Math. J., 170(18):4123-4169, 2021. [N] A. Negut. The shuffle algebra revisited. Int. Math. Res. Not. IMRN, (22):6242-6275, 2014.