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Introduction

One important problem in representation theory and algebraic com-
binatorics is to deduce the Schur function expansion of a symmet-
ric function whose expansion in terms of Gessel’s fundamental qua-
sisymmetric functions is known. Toward this goal, crystal skeletons
were introduced in [3] as a tool for interpolating between crystal
graphs and their quasi-crystal components. In [2], we combinato-
rially classify and axiomatize the structure of crystal skeletons.

Crystals, quasi-crystals, and crystal skeletons

For a partition λ⊢ n, the type-An−1 crystal graph B(λ)n has vertices
indexed by semistandard Young tableaux S ∈ SSYT(λ) (with entries
from [n] = {1, . . . ,n}), and directed edges labelled by integers [n −1]
corresponding to lowering operators.

Given a standard tableau T, the quasi-crystal QT is the subgraph in-
duced by those S ∈ SSYT(λ) that standardize to T. Just as the charac-
ter of B(λ) is the Schur function sλ, the character for the quasi-crystal
QT is Gessel’s fundamental quasisymmetric function FDes(T).

The crystal skeleton CS(λ) was initially defined by contracting each
quasi-crystal component of B(λ)n, resulting in a directed graph with
vertices indexed by standard Young tableaux.

[Note: In this project, we relabel the edges of CS(λ) using data from standard tableaux directly.]

Figure 1. Left: The crystal B(2,1)3 with two quasi-crystal components
outlined and standard tableaux indicated by T1 and T2. Right: the
contraction of each quasi-crystal.
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Combinatorial data

Given S ∈ SSYT(λ) ,

• row(S) is the word given by reading entries left-to-right,
top-to-bottom (in French notation);

•Des(S) is the (right) descent composition of row(S).

For a standard tableau T, a Dyck pattern interval is any [i , i +
2m] ⊆ [n] for which the RSK insertion tableaux of row(T)|[i ,i+2m] and
row(T)|[i ,i+m] have shape (m +1,m) and (m +1), respectively.

Example.

T =
1 3 4
2 6
5

row(T) = 5 2 6 1 3 4 Des(T) = (1,3,2)

The interval I = [2,6] is a Dyck pattern interval in row(T) since

row(T)|[2,6] = 5 2 6 3 4
RSK insertion−−−−−−−−−−→ 2 3 4

5 6

row(T)|[2,4] = 2 3 4
RSK insertion−−−−−−−−−−→ 2 3 4

Edges

Thm. The edges T → T′ in CS(λ) are in bijection with Dyck pattern
intervals I = [i , i + 2m] in T. Moreover, there is a cycle of the form
σ= ( j +m, j +m −1, . . . , j −1, j ) for which σ ·T = T′. See Figure 2.

Cor. The dual equivalence graph [1] of shape λ is the subgraph of
CS(λ) induced by edges with intervals of length 3.

Selected examples of notable structure in CS(λ)

Lusztig involution η : B(λ) → B(λ) is defined in type A via evacuation:
For S ∈ SSYT(λ) and row(S) = w1 . . . wℓ, define evac(T) as the RSK in-
sertion tableau of the word row(S)# = (n +1−wℓ) . . . (n +1−w1). This
induces an involution on CS(λ) which sends Des(T) to its reverse, and

[i , i +2m] 7→ [n +1− (i +2m),n +1− i ].

Self-similarity and branching: For T ∈ SYT(λ) and an interval
[a,b] ⊆ [n], let T[a,b] to be the skew tableau given by restricting to
boxes filled by [a,b]. If µ is the shape of the jeu de taquin straighten-
ing of T[a,b], then CS(µ) is a natural subgraph of CS(λ). It follows that
deleting those edges in CS(λ) with intervals containing n results in
a graph G[1,n−1] whose connected components are crystal skeletons
CS(µ) with µ= λ− .

Top subcrystal: The subgraph induced by tableaux with descent
composition of length ℓ= ℓ(λ) is isomorphic to the crystal B(λ)ℓ.

Figure 2. CS(3,2,1) with edges labeled by the intervals and cycles. Thick
arrows highlight the top subcrystal B(3,2,1)3, and the outlined compo-
nents are the connected components in the restriction G[1,5].
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Axioms

In [2], we give three axiomatizations of crystal skeletons, analogous
to Stembridge’s axioms for crystal graphs. Each starts with:

• a directed graph with vertices labeled by integer compositions of n
and edges labeled by odd-length intervals I ⊆ [n];

• compatibility between incident compositions and intervals;

• existence conditions on edges.

Then, what we call GLn axioms and Sn axioms specify local and
global properties such as “fan” shaped subgraphs, Lusztig involution,
top subcrystals, branching, and/or connectivity. Finally, local ax-
ioms instead condition on commutation relations and string lengths.
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