Motivation and Intuition

Most g-matroids are not representable

In combinatorics the g-analogue of a problem can be interpreted as what happens if we generalize from finite sets to finite dimensional vector spaces. The “q" is often seen as the size of a finite field.

Matroids: basics [7, Chapter 1]

Matroid: Pair M = (E, r) of a finite set E and function r : P(E) — Z
satisfying the rank-axioms: for all A,B C E

1L.0<r(A) <A
2. if AC B, then r(A) < r(B).
3. r(ANB) + r(AUB) < r(A) + r(B) (semimodularity).

» Rank of M: the value r(M) := r(E).

» Basis: subset B C E s.t. r(B) = |B| = r(E).

» Circuit: C C Est. r(C)=|C| —1and r(A) = |Al forall AC C.
> A matroid M is paving if every circuit C of M satisfies |C| > r(M).

Matroids: motivating example

b c
Figure 1: Config. of 5 vectors in 3. Figure 2: Graph with 5 labled edges.

Matroids: representability [7, Chapter 6]

> Let E be the set of column labels of a full-rank (k x n)-matrix A over a
field . Let B4 be the collection of k-subsets X = {ij,... ik} C E s.t.
det(AiL, ..., i]) # 0.

> Vector matroid of A: M[A] := (E,Bp).

» A rank-k matroid M on n-elements is IF-representable, if there exist a
full-rank (k x n)-matrix A over F s.t M = M[A].

Nelson '18: representability in the limit case [6]

Asymptotically almost all matroids are non-representable.

Vamos matroid

» Paving matroid of rank 4 over 8
elements.

» The smallest non-representable matroid.

Figure 3: Geometric representation.

Intuitively we can view g-matroids as g-analogues of matroids.

The original motivation for defining g-matroids comes from algebraic coding theory. In particular, the so called representable g-matroids arise from vector-rank-metric codes. Hence by studying those g-matroids we can gain information about the associated codes [5].

g-Matroids: basics [5]

g-Matroid: Pair M = (E, p) of a finite dim. vector space E over field I and
a function p : £(£) — Z satisfying the g-rank-axioms: for all X,Y < E

1.0 < p(X) < dim(X).
2.if X < Y, then p(X) < p(Y).
3. p(XNY)+p(XY) < p(X) + p(Y) (semimodularity).

» Rank of M: the value p(M) := p(E).
» Basis: subspace B < E s.t. p(B) = dim(B) = p(E).
» Circuit: C < Est. p(C) =dim(C) — 1 and p(A) = dim(A) forall A < C.

» A g-matroid M is paving if every circuit C of M satisfies dim(C) > p(M).

g-Matroids: representability [5]

> Let £ =g (q prime) and C < ]FZ’" a k-dim. Fgm-space for some m > 1.
Let G e ]F:f"(" be the generator matrix, i.e. RS]qu(G) =C.

> g-matroid associated to C: M := (E, p¢), where:
pe(V) = rankg,_,(GAT),  for V = RS (A).
> Cis a IFgm-space of the metric space (]Fgm, dyk), where: Vu, v € ]Fgm
dp(u, v) = rk(u—v) with rk(v):= dim]Fq<v1, Ce L Vn).
Cis called [n, k] ;m/,-code.

» A k-rank g-matroid M = (E, p) is representable, if there exists m € Z~q
and an [n, k]gm -code C s.t. M = M.

g-Matroids: example [1]

The g-matroids M, M* in Fig. (4)-(5) are both representable, via the

following matrices:
<1 0 0)
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7
\

L]
100 100 100 010 101 101 110 100 100 100 010 101 101 110

010 - 011 5. 001 01 .~ 010 .~ OL 001 010 - 011 5. 001 01 .~ 010 .~ OL 001

0 0

Figure 4: Bicolored subspace lattice of M. Figure 5: Bicolored subspace lattice of M*.

001)g,.

Coding theory: constant dimension codes [4]
> Let (L(F). ds) be a metric space, with subspace distance ds defined as:
forall V, W € L(Fg)
ds(V, W) := dim(V) + dim(W) — 2dim(V N W).
> k-constant dimension code (k-CDC): Non-empty subset C C L(Fg)
s.t. all elements are of equal dimension k.

» The maximal cardinality of a k-CDC has an exponential lower bound.

Relating CDC’s and paving g-matroids

[2, Lemma 3.3]: Let S C L(Fy) be a k-CDC, s.t. ds(V, W) > 4 for all
V,W € S. Then S corresponds to a paving g-matroid of rank k.

» Also every subset of S gives rise to a paving g-matroid. Therefore we have
2l many of them.

Algebra: zero patterns [8]

» Let K be field and a € K, define
ifa=0,
otherwise.
Let F = (f, ..., fm) be a sequence of polynomials in K[xi, ..., xs]. For
a € K* we call 6(F, a) := (0(f1(a)),....0(fm(a))) a zero pattern of F.

» The number of zero patterns of F has an exponential upper bound
depending on the degrees of the polynomials in F.

Relating zero patterns and representable q-matroids

» Let n>1and 1 < k < n. Consider the vector space ]FZ and fix a total
ordering on the set of all k-dimensional subspaces of F7, i.e., U, ..., U(f) .
q

To each k-dimensional space U; € L(Fg), we can associated a homogeneous
polynomial fy;, of degree k in some polynomial ring P over E with kn-many
variables. (Details: [2, Definition 4.3])

Denote by F,  := (fUr)lﬁii(Z)q the sequence of the above polynomials.

Let M be a g-matroid of rank k on ]Fg and B, N'B its collection of bases
and non-bases, respectively.

[2, Lemma 4.4]: M is representable if and only if there exists a zero
pattern of F,, 4 for some u € ]F'T,kn of the form
if Ui e NB,

W) = (i< (p) iU €B.

Motivating questions
1. Question: Are all g-matroids representable? (Jurrius, Pellikaan 18, [5])
Answer: No!

» Luerssen, Jany '22 ([3]): Method of translating non-representable matroids
to the g-analogue setting (e.g. g-Vamos matroid).

» Ceria, Jurrius '22 ([1]): Smallest non-representable g-matroid (rank 2 on IF§).

2. Question: Is there a g-analogue of Nelson's theorem?

Answer: Yes!

Main result: asymptotics of representable q-matroids [2]

Theorem (D., Kiihne '24)
Let Rq(n) be the number of representable g-matroids and Ng(n) be the

~ . n 0 . Rgln)
number of all g-matroids on FJ, respectively. Then nll)mwﬁq(—"j =0.

In orther words: Asymptotically almost all g-matroids are
non-representable.

Proof strategy

» Find a lower bound on Ngy(n), which is at least doubly exponentially.
— Use the relation between paving g-matroids and CDC's, together with the

lower bounds on their maximal sizes.
— [2, Theorem 3.5]

» Find an upper bound on Rg(n), which is at most exponentially.

> Use the relation between representable g-matroids and zero patterns,
together with their upper bounds.
— [2, Theorem 4.7]
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