Most *q*-matroids are not representable

In combinatorics the q-analogue of a problem can be interpreted as what happens if we generalize from finite sets to finite dimensional vector spaces. The "q" is often seen as the size of a finite field.

Intuitively we can view q-matroids as q-analogues of matroids.

The original motivation for defining q-matroids comes from algebraic coding theory. In particular, the so called representable q-matroids arise from vector-rank-metric codes. Hence by studying those q-matroids we can gain information about the associated codes [5]

Matroid: Pair M = (E, r) of a finite set E and function $r : \mathcal{P}(E) \to \mathbb{Z}$ satisfying the rank-axioms: for all $A, B \subseteq E$

- 1. 0 < r(A) < |A|.
- if A ⊆ B, then r(A) < r(B).
- 3. $r(A \cap B) + r(A \cup B) \le r(A) + r(B)$ (semimodularity).
- **Rank of** M: the value r(M) := r(E).
- ▶ Basis: subset $B \subseteq E$ s.t. r(B) = |B| = r(E).
- ▶ Circuit: $C \subseteq E$ s.t. r(C) = |C| 1 and r(A) = |A| for all $A \subseteq C$.
- ▶ A matroid M is **paving** if every circuit C of M satisfies $|C| \ge r(M)$.

[2 0 0 0 2] 0 1 0 2 2 0 0 1 0 0

Figure 1: Config. of 5 vectors in \mathbb{R}^3 .

Figure 2: Graph with 5 labled edges.

- ▶ Let E be the set of column labels of a full-rank $(k \times n)$ -matrix A over a field \mathbb{F} . Let \mathbb{B}_{Δ} be the collection of k-subsets $X = \{i_1, \dots, i_k\} \subseteq E$ s.t. $det(A[i_1,\ldots,i_k]) \neq 0.$
- ▶ Vector matroid of A: $M[A] := (E, \mathbb{B}_A)$
- ▶ A rank-k matroid M on n-elements is F-representable, if there exist a full-rank $(k \times n)$ -matrix A over \mathbb{F} s.t M = M[A].

Asymptotically almost all matroids are non-representable

- ► Paving matroid of rank 4 over 8
- ► The smallest non-representable matroid.

Figure 3: Geometric representation

q-Matroid: Pair $\mathcal{M} = (E, \rho)$ of a finite dim. vector space E over field \mathbb{F} and a function $\rho: \mathcal{L}(E) \to \mathbb{Z}$ satisfying the *q-rank-axioms*: for all X, Y < E

- 1. $0 \le \rho(X) \le \dim(X)$.
- 2. if $X \leq Y$, then $\rho(X) \leq \rho(Y)$.
- 3. $\rho(X \cap Y) + \rho(X+Y) \le \rho(X) + \rho(Y)$ (semimodularity).
- ▶ Rank of \mathcal{M} : the value $\rho(\mathcal{M}) := \rho(E)$.
- ▶ **Basis:** subspace $B \le E$ s.t. $\rho(B) = \dim(B) = \rho(E)$.
- ▶ Circuit: $C \le E$ s.t. $\rho(C) = \dim(C) 1$ and $\rho(A) = \dim(A)$ for all $A \le C$.
- A q-matroid M is paving if every circuit C of M satisfies dim(C) ≥ ρ(M).

- ▶ Let $E = \mathbb{F}_q^n$ (q prime) and $C \leq \mathbb{F}_{q^m}^n$ a k-dim. \mathbb{F}_{q^m} -space for some $m \geq 1$. Let $G \in \mathbb{F}_{q,m}^{k \times n}$ be the generator matrix, i.e. $\mathsf{RS}_{\mathbb{F}_{q,m}}(G) = \mathcal{C}$.
- ▶ q-matroid associated to C: $\mathcal{M}_C := (E, \rho_C)$, where:

$$\rho_{\mathcal{C}}(V) = \operatorname{rank}_{\mathbb{F}_q m}(GA^T), \quad \text{for } V = \operatorname{RS}_{\mathbb{F}_q}(A).$$

- ightharpoonup C is a \mathbb{F}_{q^m} -space of the metric space $(\mathbb{F}_{q^m}^n, \mathsf{d_{rk}})$, where: $\forall u, v \in \mathbb{F}_{q^m}^n$ $d_{rk}(u, v) := rk(u - v)$ with $rk(v) := dim_{\mathbb{F}_q}\langle v_1, \dots, v_n \rangle$.
 - C is called $[n, k]_{a^m/a}$ -code.
- ▶ A k-rank q-matroid $\mathcal{M} = (E, \rho)$ is **representable**, if there exists $m \in \mathbb{Z}_{>0}$ and an $[n, k]_{a^m/a}$ -code \mathcal{C} s.t. $\mathcal{M} = \mathcal{M}_{\mathcal{C}}$.

The q-matroids $\mathcal{M}, \mathcal{M}^*$ in Fig. (4)-(5) are both representable, via the following matrices:

$$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}_{\mathbb{F}_{2^1}}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}_{\mathbb{F}_{2^1}}$$

Figure 4: Bicolored subspace lattice of M.

Figure 5: Bicolored subspace lattice of M^* .

▶ Let $(\mathcal{L}(\mathbb{F}_q^n), d_S)$ be a metric space, with subspace distance d_S defined as: for all $V, W \in \mathcal{L}(\mathbb{F}_q^n)$

$$d_{\mathsf{S}}(V,W) := \dim(V) + \dim(W) - 2\dim(V \cap W).$$

- ▶ k-constant dimension code (k-CDC): Non-empty subset $C \subseteq \mathcal{L}(\mathbb{F}_n^n)$ s.t. all elements are of equal dimension k.
- ▶ The maximal cardinality of a k-CDC has an exponential lower bound.

- [2, Lemma 3.3]: Let $S \subseteq \mathcal{L}(\mathbb{F}_q^n)$ be a k-CDC, s.t. $d_S(V, W) \ge 4$ for all $V, W \in \mathcal{S}$. Then \mathcal{S} corresponds to a paving q-matroid of rank k.
- Also every subset of S gives rise to a paying a-matroid. Therefore we have

Let K be field and a ∈ K define

$$\delta(a) := \begin{cases} 0 & \text{if } a = 0, \\ * & \text{otherwise.} \end{cases}$$

- Let $\mathcal{F} = (f_1, \dots, f_m)$ be a sequence of polynomials in $\mathbb{K}[x_1, \dots, x_s]$. For $a \in \mathbb{K}^s$ we call $\delta(\mathcal{F}, a) := (\delta(f_1(a)), \dots, \delta(f_m(a)))$ a zero pattern of \mathcal{F} .
- The number of zero patterns of F has an exponential upper bound depending on the degrees of the polynomials in \mathcal{F} .

- ▶ Let $n \ge 1$ and $1 \le k \le n$. Consider the vector space \mathbb{F}_q^n and fix a total ordering on the set of all k-dimensional subspaces of $\mathbb{F}_q^{\vec{n}}$, i.e., $U_1, \ldots, U_{\binom{n}{k}}$
- ▶ To each k-dimensional space $U_i \in \mathcal{L}(\mathbb{F}_q^n)_k$ we can associated a homogeneous polynomial f_{U} of degree k in some polynomial ring P over $\overline{\mathbb{F}_a}$ with kn-many variables. (Details: [2, Definition 4.3])
- ▶ Denote by $\mathcal{F}_{n,k} := (f_{U_i})_{1 \leq i \leq \binom{n}{k}_n}$ the sequence of the above polynomials.
- ▶ Let \mathcal{M} be a α -matroid of rank k on \mathbb{F}_{α}^n and \mathcal{B} . \mathcal{NB} its collection of bases and non-bases, respectively.
- [2, Lemma 4.4]: \mathcal{M} is representable if and only if there exists a zero pattern of $\mathcal{F}_{n,k}$ for some $u \in \overline{\mathbb{F}_q}^{kn}$ of the form

$$\delta(\mathcal{F}_{n,k},u) = (f_{U_i}(u))_{1 \leq i \leq \binom{n}{k}_q} = \begin{cases} 0 & \text{if } U_i \in \mathcal{NB}, \\ * & \text{if } U_i \in \mathcal{B}. \end{cases}$$

1. Question: Are all q-matroids representable? (Jurrius, Pellikaan '18, [5])

Answer: Nol

- ► Luerssen, Jany '22 ([3]): Method of translating non-representable matroids to the q-analogue setting (e.g. q-Vámos matroid).
- ▶ Ceria, Jurrius '22 ([1]): Smallest non-representable q-matroid (rank 2 on F₂⁴).
- 2. Question: Is there a q-analogue of Nelson's theorem?

Answer: Yes!

Theorem (D., Kühne '24)

Let $\mathcal{R}_q(n)$ be the number of representable q-matroids and $\mathcal{N}_q(n)$ be the number of all q-matroids on $\mathbb{F}_{q'}^n$ respectively. Then $\lim_{N \to \infty} \frac{\mathcal{R}_q(n)}{N(n)} = 0$.

In orther words: Asymptotically almost all a-matroids are non-representable.

- Find a lower bound on $\mathcal{N}_{\sigma}(n)$, which is at least doubly exponentially.
- → Use the relation between paving q-matroids and CDC's, together with the lower bounds on their maximal sizes.
- \rightarrow [2, Theorem 3.5]
- Find an upper bound on $\mathcal{R}_{a}(n)$, which is at most exponentially
- → Use the relation between representable a-matroids and zero patterns. together with their upper bounds.
- \rightarrow [2. Theorem 4.7]

- [1] M. Ceria and R. Jurrius, The direct sum of q-matroids. arXiv:2109.13637, 2022.
- S. Degen, L. Kühne. Most q-matroids are not representable. 2024. arXiv:2408.06795.
- H. Gluesing-Luerssen and B. Janv. a-Polymatroids and Their Relation to Rank-Metric Codes arXiv:2104.06570v3 2022
- D. Heinlein and S. Kurz, Asymptotic bounds for the sizes of constant dimension codes and an improved lower bound. Springer International Publishing, Lecture Notes in Computer Science, 2017.
- R. Jurrius and R. Pellikaan, Defining the q-Analogue of a Matroid. The Electronic Journal of Combinatorics, 25(3), 2018. P. Nelson, Almost all matroids are nonrepresentable. Bulletin of the London Mathematical
- J. Oxley, Matroid Theory. Oxford Graduate Text in Mathematics, Oxford University Press, 2nd edition, 2011.
- L. Ronyai and L. Babai and M. K. Ganapathy, On the number of zero-patterns of a sequence of polynomials. Journal of the American Mathematical Society, 2000