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Motivation and Intuition

In combinatorics the q-analogue of a problem can be interpreted as what happens if we generalize from finite sets to finite dimensional vector spaces. The “q” is often seen as the size of a finite field.

Intuitively we can view q-matroids as q-analogues of matroids.

The original motivation for defining q-matroids comes from algebraic coding theory. In particular, the so called representable q-matroids arise from vector-rank-metric codes. Hence by studying those q-matroids we can gain information about the associated codes [5].

Matroids

Matroids: basics [7, Chapter 1]

Matroid: Pair M = (E , r) of a finite set E and function r : P(E ) → Z
satisfying the rank-axioms: for all A,B ⊆ E

1. 0 ≤ r(A) ≤ |A|.
2. if A ⊆ B , then r(A) ≤ r(B).

3. r(A ∩ B) + r(A ∪ B) ≤ r(A) + r(B) (semimodularity).

▶ Rank of M: the value r(M) := r(E ).

▶ Basis: subset B ⊆ E s.t. r(B) = |B | = r(E ).

▶ Circuit: C ⊆ E s.t. r(C ) = |C | − 1 and r(A) = |A| for all A ⊊ C .

▶ A matroid M is paving if every circuit C of M satisfies |C | ≥ r(M).

Matroids: motivating example
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Figure 1: Config. of 5 vectors in R3.
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Figure 2: Graph with 5 labled edges.

Matroids: representability [7, Chapter 6]

▶ Let E be the set of column labels of a full-rank (k × n)-matrix A over a
field F. Let BA be the collection of k-subsets X = {i1, . . . , ik} ⊆ E s.t.
det(A[i1, . . . , ik ]) ̸= 0.

▶ Vector matroid of A: M [A] := (E ,BA).

▶ A rank-k matroid M on n-elements is F-representable, if there exist a
full-rank (k × n)-matrix A over F s.t M = M [A].

Nelson ’18: representability in the limit case [6]

Asymptotically almost all matroids are non-representable.

Vámos matroid

Figure 3: Geometric representation.

▶ Paving matroid of rank 4 over 8
elements.

▶ The smallest non-representable matroid.

q-Matroids

q-Matroids: basics [5]

q-Matroid: Pair M = (E , ρ) of a finite dim. vector space E over field F and
a function ρ : L(E ) → Z satisfying the q-rank-axioms: for all X ,Y ≤ E

1. 0 ≤ ρ(X ) ≤ dim(X ).

2. if X ≤ Y , then ρ(X ) ≤ ρ(Y ).

3. ρ(X ∩ Y ) + ρ(X+Y ) ≤ ρ(X ) + ρ(Y ) (semimodularity).

▶ Rank of M: the value ρ(M) := ρ(E ).

▶ Basis: subspace B ≤ E s.t. ρ(B) = dim(B) = ρ(E ).

▶ Circuit: C ≤ E s.t. ρ(C ) = dim(C )− 1 and ρ(A) = dim(A) for all A ⪇ C .

▶ A q-matroid M is paving if every circuit C of M satisfies dim(C ) ≥ ρ(M).

q-Matroids: representability [5]

▶ Let E = Fnq (q prime) and C ≤ Fnqm a k-dim. Fqm-space for some m ≥ 1.

Let G ∈ Fk×n
qm be the generator matrix, i.e. RSFqm(G ) = C.

▶ q-matroid associated to C: MC := (E , ρC), where:

ρC(V ) = rankFqm(GA
T ), for V = RSFq(A).

▶ C is a Fqm-space of the metric space (Fnqm, drk), where: ∀u, v ∈ Fnqm
drk(u, v) := rk(u − v) with rk(v) := dimFq⟨v1, . . . , vn⟩.

C is called [n, k]qm/q-code.

▶ A k-rank q-matroid M = (E , ρ) is representable, if there exists m ∈ Z>0
and an [n, k]qm/q-code C s.t. M = MC.

q-Matroids: example [1]

The q-matroids M,M∗ in Fig. (4)-(5) are both representable, via the
following matrices: (

0 0 1
)
F
21
,

(
1 0 0
0 1 0

)
F
21

.
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Figure 4: Bicolored subspace lattice of M.
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Figure 5: Bicolored subspace lattice of M∗.

Relations to algebra and coding theory

Coding theory: constant dimension codes [4]

▶ Let (L(Fnq), dS) be a metric space, with subspace distance dS defined as:
for all V ,W ∈ L(Fnq)

dS(V ,W ) := dim(V ) + dim(W )− 2 dim(V ∩W ).

▶ k-constant dimension code (k-CDC): Non-empty subset C ⊆ L(Fnq)
s.t. all elements are of equal dimension k .

▶ The maximal cardinality of a k-CDC has an exponential lower bound.

Relating CDC’s and paving q-matroids

[2, Lemma 3.3]: Let S ⊆ L(Fnq) be a k-CDC, s.t. dS(V ,W ) ≥ 4 for all
V ,W ∈ S. Then S corresponds to a paving q-matroid of rank k .

▶ Also every subset of S gives rise to a paving q-matroid. Therefore we have
2|S| many of them.

Algebra: zero patterns [8]

▶ Let K be field and a ∈ K, define

δ(a) :=

{
0 if a = 0,

∗ otherwise.

Let F = (f1, . . . , fm) be a sequence of polynomials in K[x1, . . . , xs ]. For
a ∈ Ks we call δ(F , a) := (δ(f1(a)), . . . , δ(fm(a))) a zero pattern of F .

▶ The number of zero patterns of F has an exponential upper bound
depending on the degrees of the polynomials in F .

Relating zero patterns and representable q-matroids

▶ Let n ≥ 1 and 1 ≤ k ≤ n. Consider the vector space Fnq and fix a total
ordering on the set of all k-dimensional subspaces of Fnq, i.e., U1, . . . ,U(nk)q

.

▶ To each k-dimensional space Ui ∈ L(Fnq)k we can associated a homogeneous

polynomial fUi of degree k in some polynomial ring P over Fq with kn-many
variables. (Details: [2, Definition 4.3])

▶ Denote by Fn,k := (fUi)1≤i≤(nk)q
the sequence of the above polynomials.

▶ Let M be a q-matroid of rank k on Fnq and B, NB its collection of bases
and non-bases, respectively.

[2, Lemma 4.4]: M is representable if and only if there exists a zero

pattern of Fn,k for some u ∈ Fq
kn

of the form

δ(Fn,k , u) = (fUi(u))1≤i≤(nk)q
=

{
0 if Ui ∈ NB,
∗ if Ui ∈ B.

Our Result

Motivating questions

1. Question: Are all q-matroids representable? (Jurrius, Pellikaan ’18, [5])

Answer: No!

▶ Luerssen, Jany ’22 ([3]): Method of translating non-representable matroids
to the q-analogue setting (e.g. q-Vámos matroid).

▶ Ceria, Jurrius ’22 ([1]): Smallest non-representable q-matroid (rank 2 on F42).

2. Question: Is there a q-analogue of Nelson’s theorem?

Answer: Yes!

Main result: asymptotics of representable q-matroids [2]

Theorem (D., Kühne ’24)

Let Rq(n) be the number of representable q-matroids and Nq(n) be the

number of all q-matroids on Fnq, respectively. Then lim
n→∞

Rq(n)
Nq(n)

= 0.

In orther words: Asymptotically almost all q-matroids are
non-representable.

Proof strategy

▶ Find a lower bound on Nq(n), which is at least doubly exponentially.

→ Use the relation between paving q-matroids and CDC’s, together with the
lower bounds on their maximal sizes.

→ [2, Theorem 3.5]

▶ Find an upper bound on Rq(n), which is at most exponentially.

→ Use the relation between representable q-matroids and zero patterns,
together with their upper bounds.

→ [2, Theorem 4.7]
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