Molecules of affine fixed-point-free W-graphs

Yifeng ZHANG† Department of Mathematics, South China Normal University

Affine permutations and involutions

- The symmetric group S_n is the group of bijections $\pi:[n] \to [n] := \{1,2,\ldots,n\}$.
- The affine symmetric group \widetilde{S}_n is the group of bijections $\pi: \mathbb{Z} \to \mathbb{Z}$ satisfying $\pi(i+n) = \pi(i) + n$ and $\pi(1) + \pi(2) + \cdots + \pi(n) = 1 + 2 + \cdots + n$.

The finite subgroup of elements $\pi \in \widetilde{S}_n$ with $\pi([n]) = [n]$ may be identified with S_n .

- Let $s_i \in \tilde{S}_n$ be permutation interchanging $i \leftrightarrow i+1$, fixing all $j \notin \{i, i+1\} + n\mathbb{Z}$. Then $s_i = s_{i+n}$ and $\tilde{S}_n = \langle s_1, \dots, s_n \rangle$ is a Coxeter group with *length function* ℓ .
- An affine involution is $z \in \widetilde{S}_n$ such that $z^2 = 1$. An affine fixed-point-free involution is an affine involution z such that there are no $x \in [n]$ with z(x) = x.
- The set of all involutions is denoted as \widetilde{I}_n while the set of all fixed-point-free involutions is denoted as \mathcal{F}_n . On \mathcal{F}_n , we define $\ell^{\mathsf{FPF}}(z) = \frac{1}{2}(\ell(z) \frac{n}{2})$.
- Given $\pi \in \widetilde{S}_n$, define $\beta(\pi) = \frac{1}{2n} \sum_{i=1}^n |\pi(i) r_n(\pi(i))|$, where $r_n(i)$ for $i \in \mathbb{Z}$ denotes the unique element of [n] that satisfies $r_n(i) \equiv i \pmod n$. For $z \in \mathcal{F}_n$, define $\operatorname{sgn}_{\mathsf{FPF}}(z) = (-1)^{\beta(z)}$.
- Let $\Theta^+ = s_1 s_3 \cdots s_{n-1} = [2,1,\ldots,n,n-1] \in \widetilde{I}_n$ and $\Theta^- = s_2 s_4 \cdots s_n = [1,0,\ldots,n-1,n-2] \in \widetilde{I}_n$, so that $\mathrm{sgn}_{\mathrm{FPF}}(\Theta^\pm) = \pm 1$. Define \mathcal{F}_n^+ as the \widetilde{S}_n -conjugacy class of Θ^+ and \mathcal{F}_n^- as the \widetilde{S}_n -conjugacy class of Θ^- . One can show that

 $\mathcal{F}_n^+ = \{z \in \mathcal{F}_n : \operatorname{sgn}_{\operatorname{FPF}}(z) = 1\} \qquad \text{and} \qquad \mathcal{F}_n^- = \{z \in \mathcal{F}_n : \operatorname{sgn}_{\operatorname{FPF}}(z) = -1\} \qquad \text{(0.1)}$ and hence that $\mathcal{F}_n = \mathcal{F}_n^+ \sqcup \mathcal{F}_n^-$

Tabloids

• Let $\lambda = (\lambda_1, \dots, \lambda_\ell)$ be a partition of size $\sum_i \lambda_i \leqslant n$. A tabloid P of shape λ is an equivalence class of fillings of the Young diagram of shape λ with elements of $[\overline{n}]$ under identification of fillings that differ by reordering elements within rows. Here \overline{i} denotes the equivalence class of integers $k \equiv i \pmod{n}$. We think of the i-th row of a tabloid P as a set $P_i \subseteq [\overline{n}]$.

Affine Matrix-Ball Construction

- Matrix-Ball Construction (MBC) is a construction algorithm of RSK correspondence besides the insertion algorithm.
- Chmutov, Pylyavskyy and Yuvidona generalized MBC to affine symmetric groups. They defined the Affine Matrix-Ball Construction (AMBC) mapping an affine permutation to the triplet of two tabloids (P,Q) with same shape and a dominant vector (ρ) .
- For example, we have

$$[6, 1, 14, 3, 18, 19, 12, 15, 17, 10] \mapsto \begin{pmatrix} \boxed{1} & \boxed{3} & \boxed{10} \\ \boxed{2} & \boxed{5} & \boxed{6} \\ \boxed{4} & \boxed{7} & \boxed{9} \end{pmatrix}, \begin{pmatrix} \boxed{3} & \boxed{5} & \boxed{6} \\ \boxed{7} & \boxed{8} & \boxed{9} \\ \boxed{1} & \boxed{4} & \boxed{10} \end{pmatrix}, \begin{pmatrix} \boxed{3} & \boxed{5} & \boxed{6} \\ \boxed{7} & \boxed{8} & \boxed{9} \\ \boxed{2} & \boxed{4} \end{pmatrix}$$

Affine FPF graphs and molecules

- For an algebra \mathcal{A} , an I-labeled graph for a finite set I is a triple $\Gamma = (V, \omega, \nu)$ where (i) V is a finite vertex set; (ii) $\omega : V \times V \to \mathcal{A}$ is a map; (iii) $\nu : V \to \mathcal{P}(I)$ is a map assigning a subset of I to each vertex.
 - We view Γ as a weighted directed graph on the vertex set V with an edge $x \xrightarrow{\omega(x,y)} y$ if $\omega(x,y) \neq 0$.
- An S-labeled graph $\Gamma=(V,\omega,\nu)$ is a W-graph if the free ${\cal A}$ -module generated by V can be given an ${\cal H}$ -module structure with

$$H_s x = \begin{cases} vx & s \notin \nu(x) \\ -v^{-1}x + \sum_{y \in V; s \notin \nu(y)} \omega(x,y)y & s \in \nu(x) \end{cases} \quad \text{for } s \in S \text{ and } x \in V.$$

- Let $\mathcal{M}=\mathcal{A}$ -span $\{M_z:z\in\mathcal{F}_n\}$ and $\mathcal{N}=\mathcal{A}$ -span $\{N_z:z\in\mathcal{F}_n\}$ denote the free \mathcal{A} -modules with bases given by the symbols M_z and N_z for $z\in\mathcal{F}_n$. We call $\{M_z\}_{z\in\mathcal{F}_n}$ and $\{N_z\}_{z\in\mathcal{F}_n}$ the standard bases of \mathcal{M} and \mathcal{N} , respectively.
- Proposition(Z.) Both $\mathcal M$ and $\mathcal N$ have unique $\mathcal H$ -module structures such that if $s\in S$ and $z\in \mathcal F_n$ then we have

$$H_s M_z = egin{cases} M_{szs} & \ell^{\mathsf{FPF}}(szs) > \ell^{\mathsf{FPF}}(z) \\ v M_z & \ell^{\mathsf{FPF}}(szs) = \ell^{\mathsf{FPF}}(z) \\ M_{szs} + (v - v^{-1}) M_z & \ell^{\mathsf{FPF}}(szs) < \ell^{\mathsf{FPF}}(z) \end{cases}$$

and

$$H_s N_z = \begin{cases} N_{szs} & \ell^{\mathsf{FPF}}(szs) > \ell^{\mathsf{FPF}}(z) \\ -v^{-1} N_z & \ell^{\mathsf{FPF}}(szs) = \ell^{\mathsf{FPF}}(z) \\ N_{szs} + (v - v^{-1}) N_z & \ell^{\mathsf{FPF}}(szs) < \ell^{\mathsf{FPF}}(z). \end{cases}$$

• Define $\mathbf{m}_{x,y}$ and $\mathbf{n}_{x,y}$ for $x,y\in\mathcal{F}_n$ as the polynomials in $\mathbb{Z}[v^{-1}]$ such that

$$\underline{M}_y = \sum_{x \in \widetilde{S}_n} \mathbf{m}_{x,y} M_x$$
 and $\underline{N}_y = \sum_{x \in \widetilde{S}_n} \mathbf{n}_{x,y} N_x$.

Let $\mu_{\mathbf{m}}(x,y)$ and $\mu_{\mathbf{n}}(x,y)$ denote the coefficients of v^{-1} in $\mathbf{m}_{x,y}$ and $\mathbf{n}_{x,y}$. Define $\nu_{\mathbf{m}},\ \nu_{\mathbf{n}}\colon\ \mathcal{F}_n\to\mathcal{P}(S)$ by

 $\nu_{\mathbf{m}}(x) = \{s \in S : sxs \leqslant_F x\} \quad \text{and} \quad \nu_{\mathbf{n}}(x) = \{s \in S : x \leqslant_F sxs\}$ where $S = \{s_1, s_2, \dots, s_n\} \subset \widetilde{S}_n$. Finally, let $\omega_{\mathbf{m}} \colon \mathcal{F}_n \times \mathcal{F}_n \to \mathbb{Z}$ be the map with

$$\omega_{\mathbf{m}}(x,y) = \begin{cases} \mu_{\mathbf{m}}(x,y) + \mu_{\mathbf{m}}(y,x) & \nu_{\mathbf{m}}(x) \in \nu_{\mathbf{m}}(y) \\ 0 & \nu_{\mathbf{m}}(x) \in \nu_{\mathbf{m}}(y). \end{cases}$$

Define ω_n : $\mathcal{F}_n \times \mathcal{F}_n \to \mathbb{Z}$ by the same formula, but with μ_m and ν_m replaced by μ_n and ν_n .

Proposition(Marberg)

Both $\Gamma_n^{\mathbf{m}}=(\mathcal{F}_n,\omega_{\mathbf{m}},\nu_{\mathbf{m}})$ and $\Gamma_n^{\mathbf{n}}=(\mathcal{F}_n,\omega_{\mathbf{n}},\nu_{\mathbf{n}})$ are \widetilde{S}_n -graphs.

• We call these graphs affine FPF graphs. The strongly connected components in a W-graph Γ are called *cells*. The connected components with respect to bidirected edges are called *molecules*.

Theorem(Z.)

For two affine involutions w and v, they are in the same molecule in $\Gamma_n^{\mathbf{m}}$ only if they have the same sign, and corresponding to tabloids of the same shape with same dominant weight applying AMBC.

- This is just a necessary condition, which is not sufficient.
- For n=4, by definition of molecule, we can find such two molecules: $\{[4,3,2,1],[-4,3,2,9],[3,-4,1,10],[-5,4,9,2],[4,-5,10,1],[4,11,-6,1]\}$ and

 $\{[0, -1, 6, 5], [0, 7, -2, 5], [7, 0, -3, 6], [-1, 8, 5, -2], [8, -1, 6, -3], [-8, -1, 6, 13]\}.$

All of them have the same sign +1 and are corresponding to tabloids of the same shape with same dominant weight 0.

Theorem(Z.)

The molecules of $\Gamma_n^{\mathbf{m}}$ with same sign, same shape and same dominant weight are isomorphic to each other.

• Denote the number of molecules of $\Gamma_n^{\mathbf{m}}$ with the same shape λ and same dominant weight ρ by $o(\lambda)$ and call it the order of λ . Recall that a|b means a divides b for two integers a,b. Moreover, a|b|c means a|b and b|c.

Proposition(Z.) $o(\lambda)$ is independent of ρ . Moreover, we have $2|o(\lambda)|n$. Specifically, we have $o((1,1,\cdots,1))=n$ and $o((\frac{n}{2},\frac{n}{2}))=2$.