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Background: a Weyl group action on “n-roots"

• Let Φ be an irreducible root system with simple roots ∆, positive
roots Φ+, and rank n > 1.

For each α ∈ Φ, denote the corresponding reflection by sα.

Let W = ⟨sα ∶ α ∈ Φ⟩ be the Weyl group of Φ, and let S = {sα ∶
α ∈ Π} be the simple reflections of W .

• We define a positive n-root of Φ to be a set of n mutually orthogo-
nal positive roots of Φ. Such a set exists if and only if Φ has Dynkin
type E7, E8, or Dn for n even. We will focus on these types in this
poster, and we denote the set of positive n-roots by Φn

+.

• The Weyl group W naturally acts on Φ+
n via the formula

w ⋅ R = {∣w ⋅ α∣ ∶ α ∈ R},
where ∣β∣ is the unique positive root in {β,−β}.

• Meanwhile, each R ∈ Φn
+ naturally gives rise to an element

γR ∶= ∏
α∈R

α ∈ M ⊆ Sym(V ),

where M is a simple QW -module constructed by Macdonald [3]
via the reflection representation V of W .

The goal of this poster is to study the W -action on Φn
+ and use it

to understand the module M.

An instructive example
The minimal-rank example occurs in type D4, where we have:

• Φ+ = {εi ± εj ∶ 1 ≤ i < j ≤ 4}, Π = {ε1 − ε2, ε2 − ε3, ε3 − ε4, ε3 + ε4}
• Φ4

+ = {{ε1 ± ε3, ε2 ± ε4}, {ε1 ± ε4, ε2 ± ε3}, {ε1 ± ε2, ε3 ± ε4}}
• The three 4-roots in Φ4

+ form a partition of Φ+, and we can identify
them with the perfect matchings of {1, 2, 3, 4} in an obvious way:

• If we denote the 4-roots listed above by C, N , and A from left to right,
then C, N , and A contain 0, 1, and 3 simple roots, respectively, and in
the module M we have the Ptolemy relation

γC = γN + γA,

which can also be viewed as a skein relation for the matchings.

• For any α = εi ± εj ∈ Φ+, the reflection sα has the same effect
as the transposition (i, j) on Φ4

+, fixes the 4-root containing α, and
interchanges the other two 4-roots in Φn

+. For example, if α = ε1 + ε3,
then sα fixes C and interchanges N and A.

The above facts are crucial for studying general n-roots because,
as we explain next, for general cases the changes a reflection can
cause on an n-root will still occur in a D4-subsystem.

Actions of reflections
Let Φ be a root system of type E7, E8, or Dn for n even.

• We define a coplanar quadruple in Φ to be an orthogonal set Q =

{β1, β2, β3, β4} such that β1 + β2 + β3 + β4 = 2γ for some root γ.

• If Q is a coplanar quadruple, then the set ΨQ ∶= Span(Q) ∩ Φ can
be shown to be a D4-subsystem of Φ. Being a 4-root of ΨQ, Q must
contain 0, 1, or 3 simple roots of ΨQ by the last section, in which
cases we will call Q a crossing, nesting, or alignment, respectively.

• Coplanar quadruples control how reflections act on Φn
+ :

Proposition. Let R ∈ Φn
+ and α ∈ Φ+. If α ∈ R, then sα ⋅ R = R.

If α ∉ R, then the set Q ∶= {β ∈ R ∶ β ⊥̸ α} is a coplanar
quadruple such that α ∈ ΨQ, and sα acts on Q as explained in the
last section (while fixing each element of R \ Q).

Example. In type D6, the following equations hold in M:

sε2+ε3 ⋅ =

= +

As the reader may be suspecting, in type Dn for n even, M has
a precise connection to the Specht module of the symmetric group
Sn ≅ W (An−1) indexed by the partition (n/2, n/2). This is an
appealing feature of the n-roots of this type.

Quasiparabolic structure

Definition (Rains–Vazirani [4]). Let (W, S) be a Coxeter system
with set of reflections T . A quasiparabolic set for W is a pair (X, λ)
where X is a W -set and λ is an integer-valued function such that

▪ ∀s ∈ S, x ∈ X, ∣λ(sx) − λ(x)∣ ≤ 1;

▪ ∀r ∈ T, x ∈ X, λ(rx) = λ(x) ⟹ rx = x;

▪ ∀s ∈ S, r ∈ T, x ∈ X ,

λ(rx) > λ(x), λ(srx) < λ(sx) ⟹ rx = sx.

The quasiparabolic order on X is the weakest partial order ≤Q such
that x ≤Q rx whenever we have x ∈ X, r ∈ T, and λ(x) ≤ λ(rx).

Theorem (Green–X. [2]) Let Φ be a root system of type E7, E8,
or Dn for n even. Define λ ∶ Φn

+ → Z by λ(R) = c(R) + 2n(R),
where c and n count the crossings and nestings in R, respectively.
Then (Φn

+, λ) is a quasiparabolic set for the Weyl group W of Φ.

We note that for the type-Dn case the theorem can be deduced from
known results about the fixed-point-free involutions of Sn, but our
proof is type-independent.

Feature-avoiding elements

Theorem (Green–X. [2]) Let Φ be a root system of type E7, E8, or
Dn for n even. Let W be the Weyl group of Φ.

1. The set BNC = {γR ∶ R ∈ Φn
+, R contains no crossing} is a basis

of M. Every element of Φn
+ is a Z+-linear combination of BNC ;

equivalently, with respect to BNC every w ∈ W acts on M by a
matrix with sign-coherent columns.

2. The set BNN = {γR ∶ R ∈ Φn
+, R contains no nesting} is also a

basis of M and admits a unitriangular transition matrix to BNC
with nonnegative integer entries. It also has the structure of a
distributive lattice induced by the left weak order ≤L on W .

3. The set XI = {R ∈ Φn
+ ∶ R contains no alignment} is a quasi-

parabolic set for a suitable parabolic subgroup WI of W .

Example. In type D6, we have BNN ≅ {w ∈ W ∶ w ≤L s2s4s3}:

s4

s2

s3

s2

s4

Proposition. The set XI ⊆ Φn
+ has the following properties:

1. If Φ has type Dn for n = 2k even, then XI is isomorphic as a
poset to the symmetric group Sk under the strong Bruhat order.

2. If Φ has type E7, then XI admits a natural bijection to the 30
inequivalent labellings of the Fano plane.

3. If Φ has type E8, then the following two graphs are not isomorhic
but quantum isomorphic in the sense of Atserias et. al. [1]:
▪ the graph where the vertices are the 120 even-level elements of

XI and where two 8-roots are adjacent if they are disjont;
▪ the graph where the vertices are the 120 positive roots of Φ and

where two roots are adjacent if they are orthogonal.
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