Orthogonal roots, Macdonald representations, and quasiparabolic W-sets

R. M. Green (University of Colorado Boulder) and Tianyuan Xu (University of Richmond)

Background: a Weyl group action on "n-roots"

- Let Φ be an irreducible root system with simple roots Δ , positive roots Φ_+ , and rank n > 1.
- For each $\alpha \in \Phi$, denote the corresponding reflection by s_{α} .
- Let $W = \langle s_{\alpha} : \alpha \in \Phi \rangle$ be the Weyl group of Φ , and let $S = \{s_{\alpha} : \alpha \in \Pi \}$ be the simple reflections of W.
- We define a *positive* n-root of Φ to be a set of n mutually orthogonal positive roots of Φ . Such a set exists if and only if Φ has Dynkin type E_7, E_8 , or D_n for n even. We will focus on these types in this poster, and we denote the set of positive n-roots by Φ_+^n .
- The Weyl group W naturally acts on Φ_n^+ via the formula

$$w \cdot R = \{|w \cdot \alpha| : \alpha \in R\},$$

where $|\beta|$ is the unique positive root in $\{\beta, -\beta\}$.

• Meanwhile, each $R \in \Phi^n_+$ naturally gives rise to an element

$$\gamma_R := \prod_{\alpha \in R} \alpha \in \mathcal{M} \subseteq \operatorname{Sym}(V),$$

where \mathcal{M} is a simple $\mathbb{Q}W$ -module constructed by Macdonald [3] via the reflection representation V of W.

The goal of this poster is to study the W-action on Φ^n_+ and use it to understand the module \mathcal{M} .

An instructive example

The minimal-rank example occurs in type D_4 , where we have:

- $\Phi_+ = \{ \varepsilon_i \pm \varepsilon_j : 1 \le i < j \le 4 \}, \Pi = \{ \varepsilon_1 \varepsilon_2, \varepsilon_2 \varepsilon_3, \varepsilon_3 \varepsilon_4, \varepsilon_3 + \varepsilon_4 \}$
- $\Phi_+^4 = \{\{\varepsilon_1 \pm \varepsilon_3, \varepsilon_2 \pm \varepsilon_4\}, \{\varepsilon_1 \pm \varepsilon_4, \varepsilon_2 \pm \varepsilon_3\}, \{\varepsilon_1 \pm \varepsilon_2, \varepsilon_3 \pm \varepsilon_4\}\}$
- The three 4-roots in Φ_+^4 form a partition of Φ_+ , and we can identify them with the perfect matchings of $\{1, 2, 3, 4\}$ in an obvious way:

• If we denote the 4-roots listed above by C, N, and A from left to right, then C, N, and A contain 0, 1, and 3 simple roots, respectively, and in the module \mathcal{M} we have the Ptolemy relation

$$\gamma_C = \gamma_N + \gamma_A$$

which can also be viewed as a skein relation for the matchings.

• For any $\alpha = \varepsilon_i \pm \varepsilon_j \in \Phi_+$, the reflection s_α has the same effect as the transposition (i, j) on Φ_+^4 , fixes the 4-root containing α , and interchanges the other two 4-roots in Φ_+^n . For example, if $\alpha = \varepsilon_1 + \varepsilon_3$, then s_α fixes C and interchanges N and A.

The above facts are crucial for studying general n-roots because, as we explain next, for general cases the changes a reflection can cause on an n-root will still occur in a D_4 -subsystem.

Actions of reflections

Let Φ be a root system of type E_7, E_8 , or D_n for n even.

- We define a *coplanar quadruple in* Φ to be an orthogonal set $Q = \{\beta_1, \beta_2, \beta_3, \beta_4\}$ such that $\beta_1 + \beta_2 + \beta_3 + \beta_4 = 2\gamma$ for some root γ .
- If Q is a coplanar quadruple, then the set $\Psi_Q := \operatorname{Span}(Q) \cap \Phi$ can be shown to be a D_4 -subsystem of Φ . Being a 4-root of Ψ_Q , Q must contain 0, 1, or 3 simple roots of Ψ_Q by the last section, in which cases we will call Q a *crossing*, *nesting*, or *alignment*, respectively.
- Coplanar quadruples control how reflections act on Φ_+^n :

Proposition. Let $R \in \Phi^n_+$ and $\alpha \in \Phi_+$. If $\alpha \in R$, then $s_\alpha \cdot R = R$. If $\alpha \notin R$, then the set $Q := \{\beta \in R : \beta \not \perp \alpha\}$ is a coplanar quadruple such that $\alpha \in \Psi_Q$, and s_α acts on Q as explained in the last section (while fixing each element of $R \setminus Q$).

Example. In type D_6 , the following equations hold in \mathcal{M} :

As the reader may be suspecting, in type D_n for n even, \mathcal{M} has a precise connection to the Specht module of the symmetric group $S_n \cong W(A_{n-1})$ indexed by the partition (n/2, n/2). This is an appealing feature of the n-roots of this type.

Quasiparabolic structure

Definition (Rains–Vazirani [4]). Let (W, S) be a Coxeter system with set of reflections T. A *quasiparabolic set for* W is a pair (X, λ) where X is a W-set and λ is an integer-valued function such that

$$\lambda(rx) > \lambda(x), \lambda(srx) < \lambda(sx) \implies rx = sx.$$

The *quasiparabolic order* on X is the weakest partial order \leq_Q such that $x \leq_Q rx$ whenever we have $x \in X, r \in T$, and $\lambda(x) \leq \lambda(rx)$.

Theorem (Green–X. [2]) Let Φ be a root system of type E_7, E_8 , or D_n for n even. Define $\lambda : \Phi^n_+ \to \mathbb{Z}$ by $\lambda(R) = c(R) + 2n(R)$, where c and n count the crossings and nestings in R, respectively. Then (Φ^n_+, λ) is a quasiparabolic set for the Weyl group W of Φ .

We note that for the type- D_n case the theorem can be deduced from known results about the fixed-point-free involutions of S_n , but our proof is type-independent.

Feature-avoiding elements

Theorem (Green–X. [2]) Let Φ be a root system of type E_7, E_8 , or D_n for n even. Let W be the Weyl group of Φ .

- 1. The set $B_{NC} = \{ \gamma_R : R \in \Phi^n_+, R \text{ contains no crossing} \}$ is a basis of \mathcal{M} . Every element of Φ^n_+ is a \mathbb{Z}_+ -linear combination of B_{NC} ; equivalently, with respect to B_{NC} every $w \in W$ acts on \mathcal{M} by a matrix with sign-coherent columns.
- 2. The set $B_{NN} = \{ \gamma_R : R \in \Phi^n_+, R \text{ contains no nesting} \}$ is also a basis of \mathcal{M} and admits a unitriangular transition matrix to B_{NC} with nonnegative integer entries. It also has the structure of a distributive lattice induced by the left weak order \leq_L on W.
- 3. The set $X_I = \{R \in \Phi^n_+ : R \text{ contains no alignment}\}$ is a quasi-parabolic set for a suitable parabolic subgroup W_I of W.

Example. In type D_6 , we have $B_{NN} \cong \{w \in W : w \leq_L s_2 s_4 s_3\}$:

Proposition. The set $X_I \subseteq \Phi^n_+$ has the following properties:

- 1. If Φ has type D_n for n=2k even, then X_I is isomorphic as a poset to the symmetric group S_k under the strong Bruhat order.
- 2. If Φ has type E_7 , then X_I admits a natural bijection to the 30 inequivalent labellings of the Fano plane.
- 3. If Φ has type E_8 , then the following two graphs are not isomorphic but quantum isomorphic in the sense of Atserias et. al. [1]:
- the graph where the vertices are the 120 even-level elements of X_I and where two 8-roots are adjacent if they are disjont;
- the graph where the vertices are the 120 positive roots of Φ and where two roots are adjacent if they are orthogonal.

References

- [1] A. Atserias, L. Mančinska, D. E. Roberson, R. Šámal, S. Severini, and A. Varvitsiotis. Quantum and non-signalling graph isomorphisms. *Journal of Combinatorial Theory, Series B*, 136:289–328, 2019.
- [2] R. M. Green and T. Xu. Orthogonal roots, Macdonald representations, and quasiparabolic sets. *Forum of Mathematics, Sigma*, 13:e110, 2025.
- [3] I. G. Macdonald. Some irreducible representations of Weyl groups. *Bulletin of the London Mathematical Society*, 4(2):148–150, 1972.
- [4] E. M. Rains and M. J. Vazirani. Deformations of permutation representations of Coxeter groups. *Journal of Algebraic Combinatorics*, 37(3):455–502, 2013.