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Background: a Weyl group action on “n-roots"

e Let ® be an irreducible root system with simple roots A, positive
roots ¢, and rank n > 1.

For each a € ¢, denote the corresponding reflection by s,,.

Let W = (s, : o € ®) be the Weyl group of ®, and let S = {s, :
« € I1} be the simple reflections of .

e We define a positive n-root of Y to be a set of n mutually orthogo-
nal positive roots of ®. Such a set exists if and only if ® has Dynkin
type L, L, or D,, for n even. We will focus on these types 1n this
poster, and we denote the set of positive n-roots by @ .

e The Weyl group W naturally acts on . via the formula
w+R={|lw-a|:a€ R},
where || is the unique positive root in {5, —3}.

e Meanwhile, each R € @] naturally gives rise to an element

YR 1= 1_[04 e M ¢ Sym(V),
a€ER

where M is a simple QIV-module constructed by Macdonald [3]
via the reflection representation V' of W.

The goal of this poster is to study the 11/ -action on ®, and use it
to understand the module M.

An instructive example

The minimal-rank example occurs 1n type D,, where we have:

b, ={e;xe;:1si<j<4}, Il ={e) —e9,69—€3,65— €4, 63+ €4}
4

O, ={{e1teg,extes}, {e1 ey, et e} {e1 ey e3 a4t}

The three 4-roots in CIDZ_LF form a partition of ¢, and we can identify
them with the perfect matchings of {1, 2, 3,4} in an obvious way:

N o VAR,

If we denote the 4-roots listed above by C, V, and A from left to right,
then C', N, and A contain 0, 1, and 3 simple roots, respectively, and in
the module M we have the Ptolemy relation

Yo = YN T VA,
which can also be viewed as a skein relation for the matchings.

For any a = ¢; £+ ¢; € $,, the reflection s, has the same effect

as the transposition (7, j) on CIDi, fixes the 4-root containing «, and
interchanges the other two 4-roots in ®,. For example, if o = £ + 3,
then s, fixes C' and interchanges /V and A.

The above facts are crucial for studying general n-roots because,
as we explain next, for general cases the changes a reflection can
cause on an n-root will still occur in a D ,-subsystem.

Actions of reflections

Let ® be a root system of type F-, Fg, or D, tor n even.

e We define a coplanar quadruple in ® to be an orthogonal set () =

{B1, Bs, B3, B4} such that 8, + By + B3 + 34 = 2~y for some root .

o If () is a coplanar quadruple, then the set ¥, := Span(()) N ® can
be shown to be a D,-subsystem of ®. Being a 4-root of W, () must
contain 0, 1, or 3 simple roots of W, by the last section, in which

cases we will call () a crossing, nesting, or alignment, respectively.

e Coplanar quadruples control how reflections act on @/, :

Proposition. Let R € &, and o € .. Ifa € R, then s, - R = R.
If « € R, then the set () := {§ € R : 8 £ «} is a coplanar
quadruple such that o € VYV, and s, acts on () as explained in the
last section (while fixing each element of R \ Q).

Example. In type D;, the following equations hold in M:

NS==y SN v

As the reader may be suspecting, in type D, for n even, M has
a precise connection to the Specht module of the symmetric group
S, = W(A,_;) indexed by the partition (n/2,n/2). This is an
appealing feature of the n-roots of this type.

Quasiparabolic structure

Definition (Rains—Vazirani [4]). Let (1/,.S) be a Coxeter system
with set of reflections T'. A quasiparabolic set for W is a pair (X, \)
where X 1s a W-set and A 1s an integer-valued function such that

m Vse S, xeX, |Asz)—Nx)| <1;
s VreT,ze X, Nrx) =\Nzx) = rx =u;
m VseSrel, reX,
ANrxz) > Mx), AMsrz) < AM(sx) = rz = szx.

The quasiparabolic order on X 1s the weakest partial order < such
that x < rx whenever we have x € X, r € T', and A\(z) < A(rzx).

Theorem (Green-X. [2]) Let ® be a root system of type L-, Exq,
or D, for n even. Define \ : ®, — Z by \(R) = ¢(R) + 2n(R),
where c and n count the crossings and nestings in R, respectively.
Then (O, \) is a quasiparabolic set for the Weyl group W of ©.

We note that for the type-D),, case the theorem can be deduced from
known results about the fixed-point-free involutions of .S,,, but our
proof 1s type-independent.

Feature-avoiding elements

Theorem (Green—X. [2]) Let ¢ be a root system of type L, Eig, or
D,, for n even. Let W be the Weyl group of .

1. The set Byo = {vp : R € ., R contains no crossing} is a basis
of M. Every element of ®, is a Z.-linear combination of By¢;
equivalently, with respect to By every w € W acts on M by a
matrix with sign-coherent columns.

2.The set Byy = {vp : R € ., R contains no nesting} is also a
basis of M and admits a unitriangular transition matrix to B¢
with nonnegative integer entries. It also has the structure of a
distributive lattice induced by the left weak order <; on W.

3.The set X; = {R € ®. : R contains no alignment} is a quasi-
parabolic set for a suitable parabolic subgroup W of W.

Example. In type Dy, we have Byy = {w € W : w <1 595483}
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Proposition. The set X; S ., has the following properties:

1. If  has type D, for n = 2k even, then X; is isomorphic as a
poset to the symmetric group S;. under the strong Bruhat order.

2.1f © has type E-, then X; admits a natural bijection to the 30
inequivalent labellings of the Fano plane.

3.If © has type Ly, then the following two graphs are not isomorhic
but quantum isomorphic in the sense of Atserias et. al. [1]:
m the graph where the vertices are the 120 even-level elements of
X1 and where two 8-roots are adjacent if they are disjont;
m the graph where the vertices are the 120 positive roots of Y and
where two roots are adjacent if they are orthogonal.
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