Subspace profiles, *q*-Whittaker functions and Krylov methods

Samrith Ram

IIIT Delhi

0. Notation

 \mathbb{F}_q : finite field of cardinality q.

 $M_n(\mathbb{F}_q): n \times n \text{ matrices over } \mathbb{F}_q.$

 μ, λ : Integer partitions.

 λ' : Partition conjugate to λ .

 $\ell(\lambda)$: Number of parts of $\lambda.$

 h_{λ} : Complete homogeneous symmetric function.

 $p_{\lambda}:$ Power sum symmetric function.

 $P_{\lambda}(x;q,t)$: Macdonald symmetric function.

 $P_{\lambda}(x;t)$: Hall-Littlewood symmetric function.

 $W_{\lambda}(x;q):q$ -Whittaker symmetric function, $P_{\lambda}(x;q,0)$.

 $\widetilde{W}_{\lambda}(x;q)$: Hall dual of q-Whittaker function.

 $\tilde{H}_{\lambda}(x;t)$: Modified Hall-Littlewood symmetric function.

 ω : Involution on symmetric functions satisfying $\omega s_{\lambda} = s_{\lambda'}$.

 $\langle f, g \rangle$: Hall scalar product of symmetric functions f and g.

 $f \circ g$: Plethystic substitution of g into f.

 Δ : A square matrix over \mathbb{F}_q .

 $F_{\Delta}(x)$: invariant flag generating function for $\Delta\in \mathrm{M}_n(\mathbb{F}_q).$

 $\begin{bmatrix} n \\ k \end{bmatrix}_q$: Number of k-dimensional subspaces of \mathbb{F}_q^n .

1. Main Problem

Definition: Given a matrix $\Delta \in \mathrm{M}_n(\mathbb{F}_q)$, a subspace W of \mathbb{F}_q^n has Δ -profile $\mu = (\mu_1, \mu_2, \ldots)$ if

$$\dim(W + \Delta W + \dots + \Delta^{j-1}W) = \mu_1 + \mu_2 + \dots + \mu_j \text{ for } j \ge 1.$$

Let $\sigma(\mu, \Delta)$ denote the number of subspaces with Δ -profile μ .

Theorem: If Δ is regular nilpotent (nilpotent with one-dimensional null space), then

$$\sigma(\mu,\Delta) = \prod_{i\geq 2} q^{\mu_i^2} egin{bmatrix} \mu_{i-1} \ \mu_i \end{bmatrix}_q.$$

Theorem: If Δ is simple (has irreducible characteristic polynomial),

$$\sigma(\mu, \Delta) = \frac{q^n - 1}{q^{\mu_1} - 1} \prod_{i > 2} q^{\mu_i^2 - \mu_i} \begin{bmatrix} \mu_{i-1} \\ \mu_i \end{bmatrix}_{a}.$$

Bender, Coley, Robbins and Rumsey [2, p. 2] proved the above theorems and posed the following problem in 1992.

Problem: Given μ and Δ , determine $\sigma(\mu, \Delta)$.

2. Invariant flag generating function

The action of Δ on \mathbb{F}_q^n defines an $\mathbb{F}_q[t]$ -module on \mathbb{F}_q^n which is isomorphic to a direct sum

$$\bigoplus_{i=1}^k \bigoplus_{j=1}^{\ell_i} \frac{\mathbb{F}_q[t]}{(g_i^{\lambda_{i,j}})},$$

where $g_i(t) \in \mathbb{F}_q[t]$ are distinct monic irreducible polynomials and the sequence $\lambda^i = (\lambda_{i,1}, \lambda_{i,2}, \dots, \lambda_{i,\ell_i})$ is an integer partition for each $1 \le i \le k$. Let d_i denote the degree of g_i for $1 \le i \le k$.

Definition: The invariant flag generating function $F_{\Delta}(x)$ is a symmetric function in the variables $x = (x_1, x_2, \ldots)$ defined by

$$F_{\Delta}(x) := \prod_{i=1}^k ilde{H}_{\lambda^i}(x_1^{d_i}, x_2^{d_i}, \ldots; q^{d_i}) = \prod_{i=1}^k p_{d_i} \circ ilde{H}_{\lambda^i}(x; q),$$

where $\tilde{H}_{\lambda}(x;t)$ denotes a modified Hall-Littlewood function.

3. General solution to main problem

Theorem (S. R. [3]): For each partition μ ,

$$\sigma(\mu, \Delta) = (-1)^{\sum_{j \ge 2} \mu_j} q^{\sum_{j \ge 2} \binom{\mu_j}{2}} \langle F_{\Delta}(x), \widetilde{W}_{\mu}(x; q) \, h_{n-|\mu|} \rangle,$$

for each prime power q and each matrix $\Delta \in M_n(\mathbb{F}_q)$.

Here h_{λ} and \widetilde{W}_{λ} denote the complete homogeneous symmetric function and dual (with respect to the Hall scalar product) q-Whittaker symmetric function.

Several symmetric functions such as the power sum symmetric functions, the complete homogeneous symmetric functions and products of modified Hall-Littlewood functions arise as $F_{\Delta}(x)$ for suitably chosen Δ . When μ is a partition of n, the theorem above entails new combinatorial interpretations of the coefficients in the q-Whittaker expansions of each of these symmetric functions.

4. Krylov Subspace Methods

Let $\Delta \in M_n(\mathbb{F}_q)$ and consider a subset $S = \{v_1, \dots, v_k\} \subset \mathbb{F}_q^n$. The truncated Krylov subspace of order ℓ generated by S is defined by

$$\operatorname{Kry}(\Delta, S, \ell) := \left\{ \sum_{i=1}^k f_i(\Delta) v_i : f_i(x) \in \mathbb{F}_q[x] \text{ and } \deg f_i < \ell \right\}.$$

Let $\psi_{k,\ell}(\Delta)$ denote the probability of selecting a k-tuple of vectors uniformly at random from \mathbb{F}_q^n such that $\operatorname{Kry}(\Delta, S, \ell) = \mathbb{F}_q^n$. Estimating $\psi_{k,\ell}(\Delta)$ is crucial for analyzing a class of algorithms called Krylov subspace methods. These can be traced back to work by Lagrange, Euler, Gauss, Hilbert and von Neumann, among others (Liesen and Strakoš [6, p. 8]). For instance, the Number Field Sieve [5] depends on Krylov subspace methods. Another example is Wiedemann's algorithm, used to determine the minimal polynomials of large matrices over finite fields.

Theorem (S. R. [3]): For each matrix $\Delta \in M_n(\mathbb{F}_q)$, we have $\psi_{k,\ell}(\Delta) = \langle F_{\Delta}(x), G(n,k,\ell) \rangle$, where

$$G(n,k,\ell) := q^{-nk} \sum_{\substack{\mu \vdash n \\ \ell(\mu) \leq \ell}} (-1)^{n-\mu_1} (q-1)^{\mu_1} q^{\sum_{j \geq 1} \binom{\mu_j}{2}} \binom{k}{\mu_1}_q [\mu_1]_q ! \widetilde{W}_{\mu}(x;q).$$

5. Anti-invariant subspaces

Definition: Given $\Delta \in M_n(\mathbb{F}_q)$ and a positive integer k, a subspace W of \mathbb{F}_q^n is k-fold Δ -anti-invariant if

$$\dim(W + \Delta W + \dots + \Delta^k W) = (k+1) \cdot \dim W.$$

Anti-invariant subspaces were originally defined (for k=1) by Barría and Halmos [1].

Theorem (S. R. [3]): For $\Delta \in M_n(\mathbb{F}_q)$, the number of k-fold Δ -anti-invariant subspaces of dimension m equals

$$(-1)^{mk}q^{k\binom{m}{2}}\langle \omega F_{\Delta}(x), P_{((k+1)^m,1^{n-m(k+1)})}(x;q) \rangle.$$

6. References

- J. Barría & P. R. Halmos, Weakly Transitive Matrices, Ill. J. Math. 28.3 (1984).
- [2] E. A. Bender, R. Coley, D. P. Robbins & H. Rumsey Jr., Enumeration of Subspaces by Dimension Sequence, J. Combin. Theory Ser. A 59.1 (1992).
- [3] S. Ram, Subspace Profiles over Finite Fields and q-Whittaker Expansions of Symmetric Functions, arXiv:2309.16607 [math.CO].
- [4] J. A. Green, The Characters of the Finite General Linear Groups, Trans. Amer. Math. Soc. 80 (1955).
- A. K. Lenstra et al., The Number Field Sieve, Lecture Notes in Math. 1554 (1993).
- [6] J. Liesen & Z. Strakoš, Krylov Subspace Methods: Principles and Analysis, SIAM 2013.
- [7] S. Ram & M. J. Schlosser, Diagonal Operators, q-Whittaker Functions and Rook Theory, arXiv:2309.06401 [math.CO].