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About Our Project

Chip firing is a game played on graphs where ‘chips’ are placed on each vertex and
distributed across the graph through ‘firings’. This game simulates exchange between
entities and has applications in fields like biology, physics, and even busin
nications. We study chip firing on signed graphs-—that is, graphs with positively or
negatively signed edges.

commu-

Chip Firing Basics

Tmagine placing some number of poker chips on each vertex of a signed graph. Label one
of the vertices ¢: this is the sink vertex, and it can be thought of as having unlimited
chips. To fire a vertex, we do the following to each of its neighbors:

» Over a positive edge, move a chip from the fired vertex to its neighbor.

» Over a negative edge, remove one chip from both vert;

For example, here we fire vertex 2:

We represent the state of the game as a configuration, which is an integral vector that
encodes the number of chips on each vertex. Note that we do not include the sink ¢ in
configurations, since we do not put chips on
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We define valid signed configurations on a signed graph with respect to the all-
positive graph G';: Let M be the Laplacian of G, and L be the Laplacian of G 5. Then,
§is valid only when M L~'5 has no negative entries.

The set of all valid signed configurations is called S*. Note that we frequently use a dif-
ferent set of valid configurations, Rt = {ML7'5: §€ S*}, to analyze the relationships
between multiple signed graphs.

Our Goals

Research on signed chip firing began in 2022 with [1]. Our research this summer builds
on their work, finding answers to the two main questions left to us from their paper:

» Vertex switching: Graphs that are switching equivalent always have the same
critical group structure. What is the relationship between the superstable

configurations of these graphs? (Theorem 1)

» Duality: There is a natural bijection between superstable and critical
configurations for unsigned graphs, but no such duality has been found for signed
graphs until now. In our research, we constructed a bijection between superstable and
critical configurations for signed graphs that naturally extends the unsigned duality

(Theorem 2)
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Figure 1: Two switching equivalent signed graphs.

Special Configurations and Critical Groups

A superstable configuration is one where firing any set of vertices ¢
A critical configuration is one that is both stable and recurrent.

sults in an invalid configuration.

» A stable configuration is one such that firing any vertex results in an invalid configuration.

» A recurrent configuration is one where, after firing the sink g, it is possible to return to the same configuration after some
number of valid non-sink firings.

Given a signed graph G, we denote the set of superstable and critical configurations in R™ as sstab(Gy) and crit(G,) respectively.
For unsigned graphs, there is a duality between superstable and critical configurations:

flip : sstab(G) — crit(G), flip(5) = Gnar — § where G is the configuration with deg —1 chips at each vertex.

Configurations ¢ and d are firing-equivalent (¢ ~, d) if there is some sequence of firings that transforms & into d. Alternatively,
& and d are firing-equivalent when L~'(¢— d) is an integer vector. Each equivalence class under ~, contains exactly one superstable
configuration and exactly one critical configuration.

We can make this set of equivalence classes a group by giving it a group operation. A natural operation is simply adding the
configurations termwise. The group is denoted K(G).

Computing Special Configurations

Although verifying that a configuration is superstable is easy, computing all of the superstable configurations of some G, is a challenge.
To find them, we must compare G, to its unsigned graph G... Here is the process:

Find all the superstable vectors of G'y. This can be done easily by chip
firing until !

you can't an;

ymore.
B Mark a unit square on the tip of each superstable vector. Fittingly, these
squares are denoted [y

@ Transform the marked spaces by LM, and find the integral points in each
parallelogram. Any integral points found are superstable configurations in
St

Note that, while squares are used in this example, the dimension of the search

space is the number of non-sink vertices in the graph. We would actually be

searching n — 1 dimensional polyhedra.

While this method works, it is slow. Finding the integral points in a polyhedron becomes exponentially harder with added dimensions,
so finding a way to reduce the dimension will improve efficiency by orders of magnitude

If a vertex has only positive incident edges (that is, it is locally
positive), then the entry corresponding to that vertex will always
be integral in the preimage of any signed configuration. This
allows us to substantially reduce the time it takes to compute
superstables for graphs with locally positive vertices.

Vertex Switching Isomorphism

Vertex switching is an operation on signed graphs. To switch a vertex v, invert the sign of every edge incident to v. Two graphs
G, and Gy, are switching equivalent if some sequence of vertex switches transforms G into Gy, (Figure 1). Another definition
is if the Laplacians L, and Ly, satisfy L, = MP E for some diagonal matrix £ whose v-th diagonal entry is —1 if vertex v is flipped,
and 1 otherwise.

Theorem 1: Switching Isomorphism

Theorem 1. Given two switching-equivalent graphs Gy and Gy, such that Ly = ELyE, the map
Ao Ev

is an isomorphism between K(Gy) and K(Gy).

This isomorphism allows us to compute special configurations faster. Given a signed graph, find some switching equivalent graph
with a maximal number of locally positive vertices. On this new graph we apply the dimension reduction described in “ Computing
Special Configurations” to compute superstables of that switching equivalent graph. Finally, we use the vertex switching
isomorphism to convert those superstables back into superstables of the original graph.

Signed Duality

We can construct a duality between signed superstable and critical configurations. First,

we will define the map 4 that is an involution on the set of superstable configurations of
the underlying unsigned graph G.:

g if {LM~'25'} = {LM~'¢,

w(s) = A { =i '

sstab(Crax

—§) otherwise

where

b(Cuax — §) refers to the unique superstable configuration that is firing-
equivalent to . — 5. Then, we can define the duality sflip that maps signed superstable
configurations to signed critical configurations in R*.

Theorem 2: Signed Duality

Theorem 2. Given a signed graph G, the map sflip : sstab(Gy) — crit(G,

5 Gz — p([5]) + {5}

ical configurations of Gy.

Not only is sflip a bijection between superstable and critical configurations in R*, it also
recovers the usual unsigned duality (the flip map) when we apply it to an unsigned graph!

Frackets and Fixed Points

If 5 € sstab(G) is a configuration where LM (25 — Gy, is integral, then the map p
in the signed duality maps § to itself; we call such a configuration a fixed point. To
analyze the number of fixed points of a signed graph, we will study structures called
frackets.

Given a chip-firing pair (L, M) and a fractional vector \x the L-fracket Nﬂ.\m is the subset
of K(L) consisting of every equivalence class that has a vector representation o € Z"
such that M L~'% has fractional part f.

The zero fracket F; of a chip firing pair (L, M) is the collection of integral vectors ¢
such that LM ~'4 is also integral. Then, the configuration §is a fixed point if and only
if G — 25 € Fy). The first step to finding the number of fixed points is to study the size
of the zero fracket:

Theorem 3. Let (L, M) be any chip-firing pair. Let py; be the product of the
invariant factors of K(M)/F excluding the largest invariant factor, and let py, be
the product of the invaria M excluding the largest invariant

factor. Then, |FF| =

The size of the zero fracket is related to the number of fixed points:

Proposition 1. If there are solutions to Cpe,— 25 € Fy, then the number of unique
lutions up to firing I is equal to |Fy|d, where d is the number of elements

of K(G)/Fy with order at most 2.

Both of the above results are most useful when we have a guarantee that K(G)/F is
cyclic—for example, when KC(G) is cyclic. When this occurs, we can apply Theorem 3
with p = 1 to find the size of Fy, and we can also easily find the number of elements of
K(G)/Fy with order at most 2 depending on whether K(G)/F; has odd or even order.
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