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BACKGROUND

Schubert polynomials arise in many areas of algebra, geometry and com-
binatorics. They generalize Schur polynomials which arise from the co-
homology of the Grassmannian and are given combinatorially in terms of
semi standard Young Tableaux (SSYT).

We give a tableau-like model for Schubert polynomials corresponding to
any choice of partial flag variety, which generalizes the SSYT model for
Schur polynomials.

Definition

A pipe dream for w € 5, is a tiling of all squares in {(i,7)]i +7 < n+ 1}
with either a = or , so that the resulting pipe starting at spot ¢ on the left
(the i pipe) ends at spot w; on the top . It is reduced if no pair of strands

cross each other more than once.
Let RP(w) denote the set of reduced pipe dreams for w.

Theorem (Bergeron and Billey [1])

For a permutation w € S, the Schubert polynomial
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Elnitsky’s Tilings (Elnitsky [2])

For w € S, draw edges 1, ..., n in order along the left boundary.
On the right boundary, draw edges in order w; ', ..., w; ! .

An Elnistky’s tiling for w is a rhombic tiling of this shape.

Assign opposite edges of a rhombus the same index. Let (7, j) be the rhom-
bus with edges indices ¢ and j. The i’th path is the chain of rhombuses from
the left to right boundary containing index <.
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Spot ¢ is a descent if w; > w;;1. For an index set I = {kq,---,ki}, the
parabolic subgroup W! = {w € S,, : All descents occur in spots in I}.
Permutations in W correspond to shapes where edges k; + 1, ..., k;,1 are

the same angle for each 7.
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SEMI STANDARD RHOMBIC TABLEAUX

For anindex set I = (kq, ..., k;) and permutation w & W1 aSemi Standard
Rhombic Tableaux (SSRT) is an Elnitsky tiling of w with numbers
T(i,7) € {1,...,n} in each rhombus (i, j) which satisfy the following.

1. Weakly decreasing along paths

2. Fori <k, < j,wehaveT(i,7) < kg4
(Equivalently T'(i, j) < i forall i < j)

3. Fort < j and any k, if (¢, j) borders (j, k), then T'(¢, ) # T'(j, k)

Let SSRT(w) be the set of SSRT for w.

MAIN THEOREM

Theorem

Su(x) =
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Bijection with Pipe Dreams

Start with just the left boundary of the SSRT. Read crossings in pipe dream
from bottom to top, left to right. When you reach a crossing of pipes ¢ and
j in row r, add rhombus (i, j) with entry r. E.x. w = 36 247 15 € W12:5};
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GRASSMANNIAN CASE

For a permutationw = a;...a;b1 ... by € W1k} for some k,

SSRT (1) — { reverse SSYT with entries in {1, ..., k! }

of shape A\, = (ar — k, ..., a2 —2,a1 — 1)
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GENERALIZATIONS

Theorem: Stanley Symmetric Functions

Let SSRT*(w) be all fillings of Elnitsky tilings for w which satisfy properties
1 and 3 for SSRT. Then the Stanley Symmetric Function for w is
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Theorem: Set Valued Rhombic Tableaux and k-Theory

Let SVRT(w) be all fillings of Elnitsky’s tilings for w with non-empty sets
of natural numbers satisfying the same rules as SSRT.

The Grothendeick polynomial for w is
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An involution on SSRT*(w) swapping the number of <’s and 7 + 1’s.
Proves that Stanley symmetric functions are symmetric.
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