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Abstract

The goal of this work is twofold. Firstly, we provide a
type-uniform formula for the torus complexity of the
usual torus action on a Richardson variety, by devel-
oping the notion of algebraic dimensions of Bruhat in-
tervals. Secondly, when a Levi subgroup in a reductive
algebraic group acts on a Schubert variety, we exhibit
a codimension preserving bijection between the Levi-
Borel subgroup orbits in the big open cell of that Schu-
bert variety and torus orbits in the big open cell of a
distinguished Schubert subvariety. This bijection has
many applications including a type-uniform formula
for the Levi-Borel complexity of a Schubert variety.

Schubert and Richardson Varieties

Let G be a complex, connected, reductive algebraic group
with maximal torus T and Borel subgroup B. This data
determines the root system Φ, simple roots ∆, and Weyl
group W . The homogeneous space G/B is the full flag
variety.
The B-orbits in G/B are the Schubert cells, X◦

w, indexed
by w ∈ W . Their closures are the Schubert varieties,
Xw.
Similarly, orbits of the opposite Borel B− gives opposite
Schubert varieties, Xw. The intersection of these give
Richardson varieties, Ru,v := Xv ∩ Xu.

Complexity of Group Actions

If an algebraic group H acts on a variety X , we say that
X is an H-variety. Let H be a reductive algebraic group
and BH a Borel subgroup of H .

Definition: H-Complexity

The H-complexity of an H-variety X , denoted
cH(X), is the minimum codimension of a BH-orbit
in X .

Normal H-varieties with cH(X) = 0 are called H-
spherical varieties. This class generalizes toric varieties.
We study the complexity of actions by the torus T and
by Levi-Borel subgroups.

Algebraic Dimension of Bruhat
Intervals

The (undirected) Bruhat graph on W has an edge w ∼
sαw for a positive root α ∈ Φ+, with label wt(w, sαw) =
α. For a Bruhat interval [u, v] := {w ∈ W | u ≤ w ≤
v}, we define:

Definition ([GH24])

The algebraic dimension of [u, v], denoted ad(u, v),
is the dimension of the vector space spanned by all
edge labels in the Bruhat graph restricted to [u, v].

This combinatorial statistic governs the geometry of torus
orbits. We show that ad(u, v) can be computed from the
root labels of all covers incident to any single element
w ∈ [u, v]. This provides an efficient computational tool.

Example: Algebraic Dimension

Let W = S4 and consider the interval [1324, 3412]. We
compute ad(1324, 3412) using the covers of the maximal
element, v = 3412. The roots corresponding to the cover
relations w⋖v are {e1−e3, e2−e3, e1−e4, e2−e4}. These
four vectors span a 3-dimensional space in R4. Therefore,
ad(1324, 3412) = 3.

Torus Complexity

Our first main result is a type-uniform formula for the
T -complexity of any Richardson variety.

Theorem 1 ([GH24])

For u ≤ v ∈ W , the T -complexity of the Richardson
variety is

cT (Ru,v) = ℓ(v) − ℓ(u) − ad(u, v).

For Schubert varieties (u = id), this simplifies. Let
supp(w) be the number of distinct simple reflections in
any reduced word for w.

Corollary ([GH24])

The T -complexity of the Schubert variety Xw is
cT (Xw) = ℓ(w) − supp(w).

Levi Subgroup Actions

For I ⊆ ∆, let WI be the parabolic subgroup of W gener-
ated by {si | αi ∈ I}. The standard parabolic subgroup
is PI = BWIB, with Levi decomposition PI = LI ⋉ UI.
The group LI is a Levi subgroup, and BLI

:= B ∩ LI

is a Levi-Borel subgroup. An LI-action on Xw exists if
I ⊆ DL(w), the left descent set of w (i.e., {αi ∈ ∆ :
ℓ(siw) < ℓ(w)}).

Orbit Bijection

Let w = Iw
Iw be the length-additive left parabolic de-

composition of w ∈ W , where Iw ∈ WI. We establish a
connection between orbits of BLI

and orbits of T .

Theorem 2 ([GH24])

Let w ∈ W and I ⊆ ∆. The map
O :OT (X◦

Iw)→OBLI
(X◦

w)
given by Θ 7→ BLI

Iwx, where x ∈ Θ, is a surjection.
If LI acts on Xw, then O is a codimension preserving
bijection.

This allows us to transfer problems about BLI
-orbits to

the more understood setting of T -orbits.

Levi Complexity

Applying the orbit bijection and our torus complexity re-
sults, we obtain the following theorem.

Theorem 3 ([GH24])

Let w ∈ W and suppose LI acts on Xw. Then the
LI-complexity is given by

cLI
(Xw) = ℓ(Iw) − supp(Iw).

Context and Previous Work

Karuppuchamy provided a succinct classification of toric
Schubert varieties [Kar13]. For type A, Lee, Masuda, and
Park classified complexity-one Schubert varieties, while
Donten-Bury, Escobar, and Portakal computed the torus
complexity of Richardson varieties [DBEP23]. Our results
provide type-uniform formulas for these complexities.
The study of Levi-actions on Schubert varieties was initi-
ated in [HY22], leading to a classification of LI-spherical
Schubert varieties in [GHY24]. Our Theorem 3 provides
a general formula for the LI-complexity, extending that
classification.

Partial Flag Varieties

For J ⊆ ∆, let PJ be the corresponding standard
parabolic subgroup. Our results extend to Schubert vari-
eties XJ

w in the partial flag variety G/PJ . Here w ∈ W J ,
the set of minimal length coset representatives for W/WJ .

Theorem 4 ([GH24])

Let w ∈ W J . The T -complexity of XJ
w is equal to the

T -complexity of the corresponding Schubert variety
Xw in the full flag variety G/B:

cT (XJ
w) = cT (Xw) = ℓ(w) − supp(w).

This gives a new, type-uniform classification of toric Schu-
bert varieties in any partial flag variety, generalizing the
classification for the full flag variety (J = ∅) from [Kar13].
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