Orbit structures and complexity in Schubert and Richardson Varieties

Yibo Gao and Reuven Hodges

Beijing International Center for Mathematical Research, Peking University Department of Mathematics, University of Kansas

Abstract

The goal of this work is twofold. Firstly, we provide a type-uniform formula for the torus complexity of the usual torus action on a Richardson variety, by developing the notion of algebraic dimensions of Bruhat intervals. Secondly, when a Levi subgroup in a reductive algebraic group acts on a Schubert variety, we exhibit a codimension preserving bijection between the Levi-Borel subgroup orbits in the big open cell of that Schubert variety and torus orbits in the big open cell of a distinguished Schubert subvariety. This bijection has many applications including a type-uniform formula for the Levi-Borel complexity of a Schubert variety.

Schubert and Richardson Varieties

Let G be a complex, connected, reductive algebraic group with maximal torus T and Borel subgroup B. This data determines the root system Φ , simple roots Δ , and Weyl group W. The homogeneous space G/B is the full flag variety.

The *B*-orbits in G/B are the *Schubert cells*, X_w° , indexed by $w \in W$. Their closures are the *Schubert varieties*, X_w .

Similarly, orbits of the opposite Borel B^- gives opposite $Schubert\ varieties,\ X^w$. The intersection of these give $Richardson\ varieties,\ \mathcal{R}_{u,v}:=X_v\cap X^u$.

Complexity of Group Actions

If an algebraic group H acts on a variety X, we say that X is an H-variety. Let H be a reductive algebraic group and B_H a Borel subgroup of H.

Definition: H-Complexity

The H-complexity of an H-variety X, denoted $c_H(X)$, is the minimum codimension of a B_H -orbit in X.

Normal H-varieties with $c_H(X) = 0$ are called Hspherical varieties. This class generalizes toric varieties.
We study the complexity of actions by the torus T and by Levi-Borel subgroups.

Algebraic Dimension of Bruhat Intervals

The *(undirected) Bruhat graph* on W has an edge $w \sim s_{\alpha}w$ for a positive root $\alpha \in \Phi^+$, with label $\operatorname{wt}(w, s_{\alpha}w) = \alpha$. For a Bruhat interval $[u, v] := \{w \in W \mid u \leq w \leq v\}$, we define:

Definition ([GH24])

The algebraic dimension of [u, v], denoted ad(u, v), is the dimension of the vector space spanned by all edge labels in the Bruhat graph restricted to [u, v].

This combinatorial statistic governs the geometry of torus orbits. We show that ad(u, v) can be computed from the root labels of all covers incident to any single element $w \in [u, v]$. This provides an efficient computational tool.

Example: Algebraic Dimension

Let $W = S_4$ and consider the interval [1324, 3412]. We compute ad(1324, 3412) using the covers of the maximal element, v = 3412. The roots corresponding to the cover relations w < v are $\{e_1 - e_3, e_2 - e_3, e_1 - e_4, e_2 - e_4\}$. These four vectors span a 3-dimensional space in \mathbb{R}^4 . Therefore, ad(1324, 3412) = 3.

Torus Complexity

Our first main result is a type-uniform formula for the T-complexity of any Richardson variety.

Theorem 1 ([GH24])

For $u \leq v \in W$, the *T*-complexity of the Richardson variety is

$$c_T(\mathcal{R}_{u,v}) = \ell(v) - \ell(u) - \operatorname{ad}(u,v).$$

For Schubert varieties (u = id), this simplifies. Let supp(w) be the number of distinct simple reflections in any reduced word for w.

Corollary ([GH24])

The *T*-complexity of the Schubert variety X_w is $c_T(X_w) = \ell(w) - \operatorname{supp}(w)$.

Levi Subgroup Actions

For $I \subseteq \Delta$, let W_I be the parabolic subgroup of W generated by $\{s_i \mid \alpha_i \in I\}$. The standard parabolic subgroup is $P_I = BW_IB$, with Levi decomposition $P_I = L_I \ltimes U_I$. The group L_I is a Levi subgroup, and $B_{L_I} := B \cap L_I$ is a Levi-Borel subgroup. An L_I -action on X_w exists if $I \subseteq \mathcal{D}_L(w)$, the left descent set of w (i.e., $\{\alpha_i \in \Delta : \ell(s_iw) < \ell(w)\}$).

Orbit Bijection

Let $w = {}_{I}w^{I}w$ be the length-additive left parabolic decomposition of $w \in W$, where ${}_{I}w \in W_{I}$. We establish a connection between orbits of $B_{L_{I}}$ and orbits of T.

Theorem 2 ([GH24])

Let $w \in W$ and $I \subseteq \Delta$. The map

$$\mathfrak{O}: \mathcal{O}_T(X_{I_w}^{\circ}) \to \mathcal{O}_{B_{L_I}}(X_w^{\circ})$$

given by $\Theta \mapsto B_{L_I}{}^I wx$, where $x \in \Theta$, is a surjection. If L_I acts on X_w , then \mathfrak{D} is a codimension preserving bijection.

This allows us to transfer problems about B_{L_I} -orbits to the more understood setting of T-orbits.

Levi Complexity

Applying the orbit bijection and our torus complexity results, we obtain the following theorem.

Theorem 3 ([GH24])

Let $w \in W$ and suppose L_I acts on X_w . Then the L_I -complexity is given by

$$c_{L_I}(X_w) = \ell({}^Iw) - \operatorname{supp}({}^Iw).$$

Context and Previous Work

Karuppuchamy provided a succinct classification of toric Schubert varieties [Kar13]. For type A, Lee, Masuda, and Park classified complexity-one Schubert varieties, while Donten-Bury, Escobar, and Portakal computed the torus complexity of Richardson varieties [DBEP23]. Our results provide type-uniform formulas for these complexities. The study of Levi-actions on Schubert varieties was initiated in [HY22], leading to a classification of L_I -spherical Schubert varieties in [GHY24]. Our Theorem 3 provides a general formula for the L_I -complexity, extending that classification.

Partial Flag Varieties

For $J \subseteq \Delta$, let P_J be the corresponding standard parabolic subgroup. Our results extend to Schubert varieties X_w^J in the partial flag variety G/P_J . Here $w \in W^J$, the set of minimal length coset representatives for W/W_J .

Theorem 4 ([GH24])

Let $w \in W^J$. The T-complexity of X_w^J is equal to the T-complexity of the corresponding Schubert variety X_w in the full flag variety G/B:

$$c_T(X_w^J) = c_T(X_w) = \ell(w) - \text{supp}(w).$$

This gives a new, type-uniform classification of toric Schubert varieties in any partial flag variety, generalizing the classification for the full flag variety $(J = \emptyset)$ from [Kar13].

Selected References

[DBEP23] M. Donten-Bury, L. Escobar, and I. Portakal.

"Complexity of the usual torus action on Kazhdan-Lusztig varieties".

Algebr. Comb. 6.3 (2023), pp. 835–861.

[GH24] Yibo Gao and Reuven Hodges.

"Orbit structures and complexity in Schubert and Richardson Varieties".

 $arXiv:2401.03714 \ [math.AG] \ 6 \ (2024).$

[GHY24] Yibo Gao, Reuven Hodges, and Alexander Yong.

"Levi-Spherical Schubert varieties".

Advances in Mathematics 439 (2024).

[HY22] R. Hodges and A. Yong.

"Coxeter combinatorics and spherical Schubert geometry.".

J. Lie Theory 32.2 (2022), pp. 447–474.

[Kar13] P. Karuppuchamy.

"On Schubert varieties".

Comm. Algebra 41.4 (2013), pp. 1365–1368.

Contact Information

Reuven Hodges

- Web: https://rhodges-math.github.io
- Email: rmhodges@ku.edu

