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Classical Schubert puzzles

Classically, a Schubert puzzle is a tiling of an equilateral trianglar region using a set of allowed puzzle
pieces
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so that only 0 and 1 labels appear along the outer boundary, not 10s.

An equilateral triangular boundary whose NW, NE, and South sides are labeled clockwise (starting at
the SW) with binary strings λ, µ, and ν will be denoted λ,µ,ν (see Fig. 1), and a puzzle with this
boundary labeling will be called a λ,µ,ν-puzzle (see Fig. 2).
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Fig. 1: The labeled boundary λ,µ,ν
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Fig. 2: A 1010,0101,0011-puzzle

Puzzles compute Schubert calculus

Classically, Schubert calculus is about computing the structure constants in the Schubert variety

basis {[Xλ] : λ ∈
([n]
k

)
} (indexed by binary strings of k 1s and n− k 0s) for the cohomology ring

H∗(Gr(k;Cn)) of the Grasmmannian of k-planes in Cn.
These are the coefficients cνλ,µ (Littlewood-Richardson numbers) appearing in the product expan-

sions [Xλ][Xµ] =
∑
ν
cνλ,µ[Xν] ∈ H∗(Gr(k;Cn)). They can be found geometrically as the intersec-

tion number of three Schubert varieties:

cνλ,µ =

∫
Gr(k;Cn)

[Xλ][Xµ][X
ν].

They can also be found combinatorially by counting puzzles. Letting ∨ denote reversal, we have:

Theorem ([KTW04], 1999).
cνλ,µ = #{ λ,µ,ν∨-puzzles}.

Generalized polygonal Schubert puzzles

Now we generalize the definition of“puzzles” to include puzzle piece tilings of convex polygonal shapes,
where

1. the angle of each puzzle piece edge relative to the x-axis is a multiple of 60◦, and
2. only 0 and 1 labels are allowed to appear along the outer boundary, not 10s.

This allows us to have puzzles with trapezoidal, parallelogram-shaped, pentagonal, and hexagonal
boundary as well. We again use a shape symbol and the suffix -puzzle to denote these puzzles.
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Fig. 3: Examples of a 101,0101,0010111,1010-puzzle, a 101,0101,011,0011-puzzle, a 00,01111,0001,111,10-puzzle, and a 0,0111,01,01,011,011-puzzle.

Equivariant puzzles
An equivariant puzzle is one where we additionally allow the equivariant piece

01

01 . This piece

carries a special weight of the form yj − yi, where 1 ≤ i < j ≤ n and (i, j) corresponds uniquely to
the piece’s position in the puzzle.

Equivariant puzzles compute Schubert calculus in H∗
T

The classes defined by the Schubert varieties, {[Xλ] : λ ∈
([n]
k

)
}, also form a basis for the T -

equivariant cohomology H∗
T (Gr(k;C

n)).

Theorem ([KT03], 2001). The structure constants in H∗
T (Gr(k;C

n)) are given by

(cT )
ν
λ,µ =

∑
λ,µ,ν∨-puzzles P

weight(P ) =
∑

λ,µ,ν∨-puzzles P

 ∏
equivariant
pieces p in P

weight(p)

 .

Results on commutative properties of polygonal puzzles

The commutative property of classical triangular puzzles says that

#{ λ,µ,ν-puzzles} = #{ µ,λ,ν-puzzles}.

(See Fig. 4). We generalize this property to polygonal puzzles in the
following theorems.

ν

λ µ
↔

ν

µ λ

Fig. 4: The NW and NE labels (indicated by red squiggly

lines) commute.

Theorems ([And24]). For each labeled boundary shape drawn below, we can commute the labels on any pair of
sides with matching colored squiggly lines while preserving the number of puzzles filling the boundary. Namely,

(a)

For α, β ∈
([a]
a1

)
, γ, δ ∈

([c]
c1

)
, and ν ∈

( [c+a]
a1+c1

)
,

#{ αγ,ν,δβ-puzzles} = #{ βγ,ν,δα-puzzles}
= #{ αδ,ν,γβ-puzzles} = #{ βδ,ν,γα-puzzles}.

δ

α

γ

ν

β

↔

δ

β

γ

ν

α

↔ · · ·

(b)
For β ∈

([a]
a1

)
, γ, δ ∈

([c]
c1

)
, and ν ∈

( [c+a]
a1+c1

)
,

#{ β,γ,ν,δ-puzzles} = #{ β,δ,ν,γ-puzzles}.
δ

β

γ

ν
↔

γ
β

δ
ν

(c)

For α, β ∈
([a]
a1

)
and γ, δ ∈

([c]
c1

)
,

#{ α,γ,β,δ-puzzles} = #{ β,γ,α,δ-puzzles}
= #{ α,δ,β,γ-puzzles} = #{ β,δ,α,γ-puzzles}.

γ
β

δ

α

↔

γ

α

δ
β

↔ · · ·

(d)

For α, β, γ, δ ∈
([a]
a1

)
and any bijection

f : {α, β, γ, δ} → {α, β, γ, δ},

#{ α,γ,β,δ-puzzles} = #{ f (α),f (γ),f (β),f (δ)-puzzles}.

γ β

δα

↔

β δ

αγ

↔ · · ·

(e)

For β, ζ ∈
([b]
b1

)
, γ, ϵ ∈

([c]
c1

)
, and δ ∈

([d]
d1

)
,

#{ β,γ,δ,ϵ,ζ-puzzles} = #{ ζ,γ,δ,ϵ,β-puzzles}
= #{ β,ϵ,δ,γ,ζ-puzzles} = #{ ζ,ϵ,δ,γ,β-puzzles}. ζ

β

γ
δ

ϵ

↔

β

ζ

γ
δ

ϵ

↔ · · ·

(f)

For α, δ ∈
([a]
a1

)
, β, ϵ ∈

([b]
b1

)
, and γ, ζ ∈

([c]
c1

)
, and any bijections

f : {α, δ} → {α, δ}, g : {β, ϵ} → {β, ϵ}, and
h : {γ, ζ} → {γ, ζ},

#{ α,β,γ,δ,ϵ,ζ-puzzles} = #{ f (α),g(β),h(γ),f (δ),g(ϵ),h(ζ)-puzzles}.

β
γ

δ

ϵ
ζ

α

↔

β
ζ

δ

ϵ
γ

α

↔ · · ·

(g)

For α ∈
([a]
a1

)
, β, ζ ∈

([b]
b1

)
, γ, ϵ ∈

([c]
c1

)
, and δ ∈

([d]
d1

)
,

#{ α,β,γ,δ,ϵ,ζ-puzzles} = #{ α,ζ,γ,δ,ϵ,β-puzzles}
= #{ α,β,ϵ,δ,γ,ζ-puzzles} = #{ α,ζ,ϵ,δ,γ,β-puzzles}.

ζ
α

β

γ

δ

ϵ

↔

β
α

ζ

γ

δ

ϵ

↔ · · ·

(h)

For α, γ, ϵ ∈
([a]
a1

)
and β, δ, ζ ∈

([b]
b1

)
, and any bijections

f : {α, γ, ϵ} → {α, γ, ϵ} and g : {β, δ, ζ} → {β, δ, ζ},

#{ α,β,γ,δ,ϵ,ζ-puzzles} = #{ f (α),g(β),f (γ),g(δ),f (ϵ),g(ζ)-puzzles}.
ζ

α

β

γ

δ

ϵ

↔

β
γ

δ

α

ζ

ϵ

↔ · · ·

(i)

For α, β, γ, δ, ϵ, ζ ∈
([a]
a1

)
and any bijection

f : {α, β, γ, δ, ϵ, ζ} → {α, β, γ, δ, ϵ, ζ},

#{ α,β,γ,δ,ϵ,ζ-puzzles} = #{ f (α),f (β),f (γ),f (δ),f (ϵ),f (ζ)-puzzles}.
ζ

α

β

γ

δ

ϵ

↔ 719 others
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Methods
We can give any ordinary or equivariant convex polygonal puzzle a familiar geometric interpretation
via an operation to “complete” it to a triangular puzzle (see Fig. 5). Letting sort be the operation of
moving all 0s ahead of all 1s in a binary string, we obtain bijections

• { β,γ,ν,δ-puzzles} ↔ { sort(β)γ,ν,δβ-puzzles},
• { α,γ,β,δ-puzzles} ↔ { sort(α)γ,β sort(δ),δα-puzzles},
• { α,β,γ,δ,ϵ,ζ-puzzles} ↔ { sort(α)βγ,sort(γ)δ sort(ϵ),ϵζα-puzzles}.
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Fig. 5: Given the labels on the triangular boundaries, there exists a unique filling of each grey triangular region with puzzle pieces, which forces

the labels around the inner pink regions to replicate those for the polygons on the top row.

Remark. We discovered and proved our results purely within the geometric context provided by this
operation, using intersection-theoretic arguments. Though they are primarily combinatorial state-
ments, we currently do not have a direct combinatorial understanding of them.

Result on commutative property of parallelogram-shaped
equivariant puzzles

The equivariant structure constants in the theorem below are the ones associated to parallelogram-
shaped equivariant puzzles, after completing to a triangle as in Fig. 5.

Theorem ([And24]). Define block matrices

Φa :=

[
Ja 0
0 Ic

]
and Φc :=

[
Ia 0
0 Jc

]
in GL(Ca+c), where Ia and Ja (resp. Ic and Jc) denote the a × a (resp. c × c) identity and
anti-diagonal permutation matrices, respectively.

Let α, β ∈
([a]
a1

)
and γ, δ ∈

([c]
c1

)
. Then in H∗

T (Gr(a1 + c1;Ca+c)), we have

(cT )
(δα)∨

sort(α)γ,β sort(δ)
= Φa·(cT )

(δβ)∨

sort(β)γ,α sort(δ)
= Φc·(cT )

(γα)∨

sort(α)δ,β sort(γ)
= Φc·Φa·(cT )

(γβ)∨

sort(β)δ,α sort(γ)
.

In other words, commuting the pair α, β reverses the y1, . . . , ya, and commuting the pair γ, δ
reverses the ya+1, . . . , ya+c in the structure constant.

Corollary. With a further simple proof (not automatically), we also get that the number of equivariant
puzzles is preserved, i.e.

#{ α,γ,β,δ-puzzles} = #{ β,γ,α,δ-puzzles} = #{ α,δ,β,γ-puzzles} = #{ β,δ,α,γ-puzzles}.

Example of commuting the NW and SE labels:
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Fig. 6: The sums of the weights on the left and right sides respectively are (y4 − y1)(y4 − y3) + (y4 − y3)(y6 − y3) + (y4 − y3)(y5 − y2) and

(y7 − y3)(y6 − y3) + (y5 − y1)(y7 − y3) + (y7 − y3)(y7 − y2). The latter can be obtained by reversing the order of the y4, y5, y6, y7 in the former.

Remark. We can generalize the theorem beyond the Grassmannian (a 1-step flag manifold) to d-step
flag manifolds, i.e. the analogous statement holds in H∗

T (Fℓ(a1 + c1, a2 + c2, . . . , ad + cd;Ca+c)).

Further questions
1. Extend our results to different types of puzzles, such as those that compute structure constants for

K-theory and Segre–Schwartz–MacPherson (SSM) classes, or 2-step, 3-step, and 4-step puzzles,
for all types of boundary shape and symmetry.

2. Find a direct combinatorial understanding of our results, perhaps on the level of puzzle pieces.


