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Abstract

We give a combinatorial proof of an identity involving Eulerian numbers that was obtained
algebraically by Brenti and Welker (2009). Our proof is based on alcoved triangulations of
dilated hypersimplices. As a byproduct, we describe the dual graph of these triangulations
for the dilated standard simplex in terms of words, and conjecture their structure for dilated
hypersimplices.

The objects involved

Ford,r,i € Nandd > 1, let
e(r,d,i)={CeN |ec1+ecat  +ea=1i,¢; <rforl<j<d},
and denote by C(r, d, ©) its cardinality.
letd > 1and1 < j < d. Define
&(d,j):={o € &u| des(o) =j — 1},
and denote by A(d, 7) its cardinality. This is the j-th Eulerian number.

The identity involving Eulerian numbers

Proposition 1.1 (Brenti-Welker, 2009):

Letd,» > 1. Then,fori = 1,...,d,
d
r* A(d, 1) :ZC(T—17d+1,7‘,r7j)A(d,j)4 (@)
j=0
In particular, when ¢ = 1,
d

rt=3"Clr—1,d+1,7 — j)A(d, ). )

j=0

“Clearly, [this] proposition asks for a combinatorial proof.” [BW09]

Reinterpreting the identities geometrically

Theorem 1.2 (Attributed to Laplace):
The i-th hypersimplex of dimension d is the polytope given by

Ng={F€eRM : 0< @, ..., 2gp1 <1 and @+t agp =)
The volume of A; 4 is given by the ¢-th Eulerian number, that is vol(A; 4) = A(d, ).

Therefore r? A(d, i) = vol(rA; 4), so we want to understand an unimodular triangulation
of rA; 4 in two different ways in order to prove the identities. Luckily, the hypersimplices are
alcoved polytopes!

Recall that alcoved polytopes come equipped with a unimodular triangulation induced by the
affine Coxeter arrangement. Denote by A(P) the set of simplices of the alcoved polytope P
in the alcoved triangulation. There is a combinatorial description of this set in type A using
sorted sets [LPO7].

Example (Alcoves and sorted sets):

A ={(3,2,0),(4,1,0),(3,1,1)}
I, ={1,1,1,1,2}
I, ={1,1,1,2,2}
I3 =4{1,1,1,2,3}

(2,30) (5,0,0)
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Main Theorem (V.P,, 2024)

Let A(rA;, q) be the set of alcoves of the -dilated hypersimplex A; 4. There exist bijections

W+ A(rA;q) — [r]* x &(d, 1)
d

Pi: A(rA;q) — U C(r—1,d+1,ir — j) x &(d,j)
=1

from which we obtain a combinatorial proof of Equation (1).

The dilated standard simplex rA; 4

To prove the Main Theorem, it is useful to start by considering the case of ¢ = 1, which we
summarize in the following diagram.

1

Py o Wy a
[r]? UJer—-1,d+1,r—j) x &(d,j)
w=3625 T ((1,0,2,0,0),3142)
W, P,
1/12334
113334
113335
123335
123345

Theorem 2.1 (V.P., 2024): The maps
Wi A(rAyg) — [r]?
d
Py A(rAr) — | J etr = 1,d+ 1,7 — ) x &(d, 5)
j=1
are bijections and give a combinatorial proof of Equation (2).

We can use the map W to understand the alcoved triangulation of 7 A4 4 even further.

Proposition 2.2 (V.P., 2024): The dual graph of the alcoved triangulation of 7A; 4 is
isomorphic to G 4, the graph on vertex set [r]¢ and edges given by

wywy ... wg ~ (wg+1)w; we ... wg—y wheneverl < wy < r,and
WP oo W Wigq - .. Wg N~ WY .. wy foranyl <i<d—1
such that w; # w;41.

Wit Wi - -

Example (r = d = 3)
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The dilated hypersimplex rA; 4

Now we can describe the maps from the Main Theorem. First,
W, o A(rA.) — [r]* x &(d, 1)

is computed as follows for A € A(rA; 4): Find the permutation 74 € & (d, i) that labels
the alcove of A; ; whose dilation contains A, and then apply W relative to that dilated stan-
dard simplex.
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On the other hand, the map

d
P A(rAg) — | e —1,d+1,ir — j) x &(d, 5)

j=1
is computed directly from the decorated matrix of the alcove.

The structure of the dual graph of the alcoved triangulation of rA; 4 is more complicated, but
we believe we can recover it as a composition of dual graphs (see [VP24, Section 3.2.3]).

Conjecture 3.1 (V.P,, 2024): Let G = G 4,;,4 and H = G, 4. The edge-coloring of G
determined by the hyperplane types prescribes a choice of connecting sets that make G (H')
isomorphic to the dual graph of the alcoved triangulation of 7A; 4.

Example (i = 2,d = 3and r = 2)

G=Gazs j=2
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1”\ /222 i 232
QT*ZTl V231
121—212 ‘“*f‘\‘

/ \ 11 1

112 122

Further and related work

______________________________________________________________|
P, o Wi ] x &(d, i) —> Ule C(r—1,d+1,ir — j) x &(d, j)
can be upgraded to a weight-preserving bijection to obtain identities for the g-Eulerian
numbers.

Based on the work of Lam and Postnikov [LP12] on alcoved polytopes for crystallographic
roots systems, we can construct a similar combinatorial model for the alcoved
triangulation of the dilated C-hypersimplices.

Ferroni and McGinnis [FM24, Theorem 1.2] give the (positive) coefficients of the Ehrhart
polynomial of slices of prisms as a sum of products of Eulerian numbers and compatible
weighted permutations. How does this relate to the combinatorial proofs presented?
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