

Simple modules for affine type A KLR algebras via skew Specht modules

Robert Muth, Thomas Nicewicz, Liron Speyer, and Louise Sutton

Okinawa Institute of Science and Technology

Background

- Let $\Phi_+ = \Phi^{\mathrm{re}}_+ \sqcup \Phi^{\mathrm{im}}_+$ be the positive root system of type $\mathbf{A}^{(1)}_{e-1}$, where $I = \{\alpha_0, \ldots, \alpha_{e-1}\}$ is the set of simple roots, Φ^{re}_+ is the set of real roots, and $\Phi^{\mathrm{im}}_+ = \{d\delta \mid d \in \mathbb{Z}_{>0}\}$ is the set of imaginary roots, with $\delta = \alpha_0 + \cdots + \alpha_{e-1}$ being the null root.
- For any field $\mathbb F$ and $\omega \in \mathbb Z_{\geqslant 0}I$, there is a KLR algebra R_ω over $\mathbb F$. These algebras categorify the positive part of the quantum group $U_q(\widehat{\mathfrak{sl}}_e(\mathbb C))$. The representation theory of KLR algebras is studied via *cuspidal systems*.
- Fix a convex preorder \succcurlyeq on Φ_+ . For $\omega \in \mathbb{Z}_{\geqslant 0}I$, a Kostant partition of ω is a tuple of non-negative integers $\boldsymbol{K} = (K_\beta)_{\beta \in \Psi}$ such that $\sum_{\beta \in \Psi} K_\beta \beta = \omega$. If $\beta_1 \succ \cdots \succ \beta_t$ are the members of Ψ such that $K_{\beta_1} \neq 0$, then we write \boldsymbol{K} in the form $\boldsymbol{K} = (\beta_1^{K_{\beta_1}} \mid \cdots \mid \beta_t^{K_{\beta_t}})$. We write $\Pi(\omega)$ for the set of all root partitions of ω ; these are pairs $\pi = (\boldsymbol{K}, \boldsymbol{\nu})$, where $\boldsymbol{K} = (\beta_1^{K_{\beta_1}} \mid \cdots \mid \beta_u^{K_{\beta_u}} \mid \delta^{K_\delta} \mid \beta_{u+1}^{K_{\beta_{u+1}}} \mid \cdots \mid \beta_t^{K_{\beta_t}})$ is a Kostant partition of ω , and

Cuspidal systems

 $oldsymbol{
u}=(
u^{(1)}\mid \cdots \mid
u^{(e-1)})$ is an

(e-1)-multipartition of K_{δ} .

To each $\beta \in \Phi^{\mathrm{re}}_+$, we associate a simple *cuspidal* R_{β} -module $L(\beta)$, and to each (e-1)-multipartition $\boldsymbol{\nu}$ of $d \in \mathbb{Z}_{>0}$, we associate a simple *semicuspidal* $R_{d\delta}$ -module $L(\boldsymbol{\nu})$. Then, to each $\pi \in \Pi(\omega)$ as above, we associate a proper standard module

$$\bar{\Delta}(\pi) = L(\beta_1)^{\circ K_{\beta_1}} \circ \cdots \circ L(\beta_u)^{\circ K_{\beta_u}} \circ L(\boldsymbol{\nu})$$

$$\circ L(\beta_{u+1})^{\circ K_{\beta_{u+1}}} \circ \cdots \circ L(\beta_t)^{\circ K_{\beta_t}},$$

which has self-dual simple head $L(\pi)$. Then $\{L(\pi) \mid \pi \in \Pi(\omega)\}$ is a complete, irredundant set of simple R_{ω} -modules up to isomorphism and grading shift.

Main goals

In the literature, the semicuspidal modules $L(\nu)$ are not presented directly – rather, their existence is established via categorification, or they are constructed through Morita equivalences with symmetric groups and Schur algebras.

Aim

Use skew Specht modules to render a more direct and combinatorial-flavoured description of semicuspidal and simple R_{ω} -modules.

Skew Specht modules

The type A KLR algebra R_{ω} is generated by $\{1_{\boldsymbol{i}} \mid \boldsymbol{i} \in I^{\omega}\} \cup \{y_1, \dots, y_m\} \cup \{\psi_1, \dots, \psi_{m-1}\},$ subject to a long list of relations.

We may associate residues $mod\ e$ to any skew diagram, and define its content to be the multiset of residues it contains, with a natural correspondence between residues and simple roots.

Let τ be a skew diagram of content ω . The tableau \mathbf{t}^{τ} is the leading tableau – fill the nodes in order along the rows.

Example

If
$$\tau = (7,4,3,2,1) \setminus (3,2,1)$$
, then \mathbf{t}^{τ} is:
$$\begin{array}{c} 1 & 2 & 3 & 4 \\ \hline & 7 & 8 \\ \hline & 9 & 10 \\ \hline & 11 \\ \end{array}$$

We define the skew Specht module \mathbf{S}^{τ} to be the graded R_{ω} -module generated by the vector v^{τ} in degree zero, subject to the relations:

$$\mathbf{1}_{\boldsymbol{i}}v^{\boldsymbol{\tau}}=\delta_{\boldsymbol{i},\boldsymbol{i}^{\boldsymbol{\tau}}}v^{\boldsymbol{\tau}}$$
 for all $\boldsymbol{i}\in I^{\omega}$;

$$y_r v^{\tau} = 0$$
 for all $r \in [1, ht(\omega)];$

$$\mathbf{3}\psi_r v^{\tau} = 0$$
 for all $r \in [1, \operatorname{ht}(\omega) - 1]$ such that r and $r+1$ are adjacent in \mathbf{t}^{τ} ;

 $\mathbf{\Phi} g^u v^{\tau} = 0$ whenever $u \in \boldsymbol{\tau}$ has a node below it in $\boldsymbol{\tau}$.

The element $g^u \in R_\omega$ above is the *Garnir element*.

The skew Specht module \mathbf{S}^{τ} has a homogeneous basis indexed by the standard τ -tableaux.

For a fixed convex preorder, we associate a tuple $\zeta(\beta)$ of skew diagrams to each root partition $\pi \in \Pi(\omega)$, working root by root.

The main result of [ADM+23] is the following.

Main result

Theorem

Let $\beta \in \Phi^{\mathrm{re}}_+$ and $K \in \mathbb{Z}_{>0}$. Up to grading shift, the real semicuspidal self-dual simple module $L(\beta^K)$ is isomorphic to the skew Specht module $\mathbf{S}^{\zeta(\beta)^K}$.

In order to describe all semicuspidal modules, we must also describe the imaginary ones $L(\nu)$. This still leaves many simple modules $L(\pi)$ that are not semicuspidal. However, two of the main results of [MNSS25] deal with both of these, as follows.

Theorem

Let $\boldsymbol{\nu}$ be an (e-1)-multipartition of d. Then $\mathbf{S}^{\zeta(\boldsymbol{\nu})}$ is an indecomposable semicuspidal $R_{d\delta}$ -module, with simple semicuspidal head isomorphic, up to grading shift, to $L(\boldsymbol{\nu})$.

More generally, let $\pi=(\boldsymbol{K},\boldsymbol{\nu})\in\Pi(\omega)$. Then the skew Specht module $\mathbf{S}^{\zeta(\pi)}$ has simple head isomorphic, up to grading shift, to $L(\pi)$, and $\{\operatorname{hd}(\mathbf{S}^{\zeta(\pi)})\mid \pi\in\Pi(\omega)\}$ gives a complete and irredundant set of simple R_{ω} -modules up to grading shift.

Example

Fix a certain preorder \succcurlyeq on Φ_+ , and let e = 4. Take $\pi \in \Pi(20\alpha_0 + 20\alpha_1 + 22\alpha_2 + 21\alpha_3)$ defined as $\pi = ((\alpha_2 + \alpha_3 + \alpha_0 \mid 2\delta + \alpha_0 + \alpha_1 + \alpha_2 \mid (\delta + \alpha_2 + \alpha_3)^2 \mid \delta^{13} \mid \delta + \alpha_1), ((3^2, 1) \mid (2^2) \mid (2)))$.

Then we construct ribbons for each positive real root in the root partition π , and 'thicker' skew shapes for the tripartition of 13 appearing in π . We then concatenate these to give:

$$\zeta(\pi) = \begin{pmatrix} 3 & 0 & 1 & 3 & 0 & 1 & 2 \\ \hline 3 & 0 & 1 & 2 & 1 & 2 \\ \hline 3 & 0 & 1 & 2 & 1 & 2 \\ \hline 2 & 1 & 2 & 1 & 2 & 1 \\ \hline 3 & 0 & 1 & 2 & 1 & 2 \\ \hline 1 & 2 & 0 & 3 & 0 & 1 & 2 \\ \hline 2 & 1 & 2 & 0 & 3 & 0 & 1 & 2 \\ \hline 3 & 0 & 1 & 2 & 1 & 2 & 1 & 2 \\ \hline 1 & 2 & 0 & 3 & 0 & 1 & 2 \\ \hline 1 & 2 & 0 & 0 & 3 & 0 & 1 \\ \hline 1 & 2 & 0 & 0 & 0 & 1 & 2 \\ \hline 1 & 2 & 0 & 0 & 0 & 1 & 2 \\ \hline 1 & 2 & 0 & 0 & 0 & 1 & 2 \\ \hline 1 & 2 & 0 & 0 & 0 & 1 & 2 \\ \hline 1 & 2 & 0 & 0 & 0 & 0 & 1 \\ \hline 1 & 2 & 0 & 0 & 0 & 0 & 1 \\ \hline 1 & 2 & 0 & 0 & 0 & 0 & 1 \\ \hline 1 & 2 & 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 & 0 \\ \hline 1 & 2 & 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 3 & 0$$

References

[ADM+23] D. Abbasian, L. Difulvio, R. Muth, G. Pasternak, I. Sholtes, and F. Sinclair, *Cuspidal ribbon tableaux in affine type A*, Algebr. Comb. **6** (2023), no. 2, 285–319.

[MNSS25] R. Muth, T. Nicewicz, L. Speyer, and L. Sutton, A skew Specht perspective of RoCK blocks and cuspidal systems for KLR algebras in affine type A, Represent. Theory (2025), to appear.