The number of irreducibles in the plethysm $s_{\lambda}[s_m]$

Ming Yean Lim

Department of Mathematics, University of Michigan

Plethysm

Plethysm is a binary operation $(f,g)\mapsto f[g]$ on the ring of symmetric functions Λ . Expressed in terms of the power sum symmetric functions p_m , plethysm is the unique operation satisfying

- for $n, m \ge 1$, $p_n[p_m] = p_{nm}$;
- for $m \geq 1$, $g \mapsto p_m[g]$ is a \mathbb{Q} -algebra homomorphism $\Lambda \to \Lambda$;
- for $g \in \Lambda$, $f \mapsto f[g]$ is a \mathbb{Q} -algebra homomorphism $\Lambda \to \Lambda$.

We are interested in the decomposition of the plethysm of Schur functions

$$s_{\lambda}[s_m] = \sum_{\nu \vdash nm} a^{\nu}_{\lambda,m} s_{\nu}$$

for a partition $\lambda \vdash n$. In particular, we investigate the sum

$$\sum_{\nu \vdash nm} a^{\nu}_{\lambda,m}.\tag{\bigstar}$$

Wreath products

Let \mathfrak{S}_n denote the symmetric group on n elements.

Let $\mathfrak{S}_m \wr \mathfrak{S}_n$ denote the *wreath product* of \mathfrak{S}_m with \mathfrak{S}_n . We can realize it as a subgroup of \mathfrak{S}_{nm} as follows:

For $1 \le i \le n$, define

$$\mathcal{P}_i = \{(i-1)m + 1, \dots, im\}.$$

We have inclusions $\mathfrak{S}_m^n \leq \mathfrak{S}_m \wr \mathfrak{S}_n \leq \mathfrak{S}_{nm}$, where \mathfrak{S}_m^n and $\mathfrak{S}_m \wr \mathfrak{S}_n$ are identified with the stabilizers of $(\mathcal{P}_1, \dots, \mathcal{P}_n)$ and $\{\mathcal{P}_1, \dots, \mathcal{P}_n\}$ respectively under the natural \mathfrak{S}_{nm} -actions.

Representation theory of \mathfrak{S}_n

The irreducible characters χ^{λ} of \mathfrak{S}_n are indexed by partitions $\lambda \vdash n$.

The Frobenius characteristic map gives a bridge between the ring of symmetric functions Λ and the representations of symmetric groups. The Schur function s_λ corresponds to χ^λ under this map.

All irreducible representations of \mathfrak{S}_n can be realized over \mathbb{Q} .

Hence, the Frobenius-Schur indicator $\iota \chi^{\lambda}$ of each irreducible character χ^{λ} is 1:

$$\iota \chi^{\lambda} = \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_{\bullet}} \chi^{\lambda}(\sigma^2) = 1.$$

Plethysm coefficients

The $\ensuremath{\textit{plethysm}}$ $\ensuremath{\textit{coefficients}}$ in our case of interest are given by the inner product

$$a_{\lambda,m}^{\nu} = \langle \chi^{\nu}, \operatorname{Ind}_{\mathfrak{S}_{m}/\mathfrak{S}_{n}}^{\mathfrak{S}_{nm}} \operatorname{Inf}_{\mathfrak{S}_{n}}^{\mathfrak{S}_{m} \wr \mathfrak{S}_{n}} \chi^{\lambda} \rangle,$$

where Ind and Inf denote the induction and inflation of characters respectively.

Sum of plethysm coefficients

Let M(n,m) denote the set of $n \times n$ non-negative integer matrices with whose row and column sums are all equal to m.

We identify \mathfrak{S}_n with the group of $n \times n$ permutation matrices.

Define $N^m:\mathfrak{S}_n\to\mathbb{Z}$ by

$$N^{m}(\sigma) = \#\{A \in M(n, m) \mid \sigma A^{\mathsf{T}} = A\},\$$

where A^{T} is the transpose of A.

Theorem. N^m is a character of \mathfrak{S}_n . Moreover for $\lambda \vdash n$,

$$\langle \chi^{\lambda}, N^m \rangle = \sum_{\nu \vdash nm} a^{\nu}_{\lambda, m}.$$

Lattice points in polytopes

Let $M_n(\mathbb{R}_{>0})$ denote the set of $n \times n$ matrices with entries in $\mathbb{R}_{>0}$.

For $\sigma \in \mathfrak{S}_n$, define the rational convex polytope

$$\mathcal{P}(\sigma) = \{ A \in M_n(\mathbb{R}_{\geq 0}) \mid A \text{ has row sums equal to 1 and } \sigma A^\mathsf{T} = A \}.$$

 $N^m(\sigma)$ is the number of integer lattice points in the dialate $m\mathcal{P}(\sigma)$.

Thus, $m \mapsto N^m(\sigma)$ is an Ehrhart quasipolynomial.

It also follows that (\bigstar) is a quasipolynomial in m.

Example

For n=3, the quasipolynomials (\bigstar) have been computed in [1].

For n=6 and $\lambda=6,$ we compute using SageMath and the above theorem that

$$\begin{split} \sum_{\nu \vdash 6m} a^{\nu}_{6,m} &= \frac{243653}{1434705592320000} m^{15} + \frac{243653}{31882346496000} m^{14} + \frac{91173671}{573882236928000} m^{13} \\ &\quad + \frac{5954623}{2942985830400} m^{12} + \frac{3895930519}{220723937280000} m^{11} + \frac{149644967}{1337720832000} m^{10} \\ &\quad + \frac{1072677673}{2006581248000} m^9 + \frac{14723521}{7431782400} m^8 + \frac{350041981}{59719680000} m^7 + O(m^6). \end{split}$$

Proof sketch

Define the function $\theta:\mathfrak{S}_{nm}\to\mathbb{C}$ by $\theta(\sigma)=\#\{\tau\in\mathfrak{S}_{nm}\mid \tau^2=\sigma\}$. Then $\langle\chi^{\nu},\theta\rangle=\iota\chi^{\nu}=1$, so $\theta=\sum_{\nu\vdash nm}\chi^{\nu}$, and

$$\sum_{\nu \vdash nm} a^{\nu}_{\lambda,m} = \langle \theta, \operatorname{Ind}_{\mathfrak{S}_m!\mathfrak{S}_n}^{\mathfrak{S}_{nm}} \operatorname{Inf}_{\mathfrak{S}_n}^{\mathfrak{S}_{m}!\mathfrak{S}_n} \chi^{\lambda} \rangle.$$

By Frobenius reciprocity and a bit of manipulation,

$$\langle \theta, \operatorname{Ind}_{\mathfrak{S}_{m} \cap \mathfrak{S}_{n}}^{\mathfrak{S}_{nm}} \operatorname{Inf}_{\mathfrak{S}_{n}}^{\mathfrak{S}_{m} \cap \mathfrak{S}_{n}} \chi^{\lambda} \rangle = \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_{n}} \left(\frac{1}{m!^{n}} \# \{ \tau \in \mathfrak{S}_{nm} \mid \tau^{2} \sigma^{-1} \in \mathfrak{S}_{m}^{n} \} \right) \chi^{\lambda}(\sigma).$$

The proof is completed by constructing a surjective $m!^n$ -to-1 map

$$\{\tau \in \mathfrak{S}_{nm} \mid \tau^2 \sigma^{-1} \in \mathfrak{S}_m^n\} \to \{A \in M(n,m) \mid \sigma A^\mathsf{T} = A\}.$$

Permutation equivalence

Call two matrices $A, B \in M(n, m)$ permutation equivalent and write $A \sim B$ if A can be transformed into B by row and column permutations.

Let $T(n,m) = \{A \in M(n,m) \mid A \sim A^{\mathsf{T}}\}$ denote the subset of matrices in M(n,m) that are permutation equivalent to their transpose.

Theorem. In the case $\lambda = n$,

$$\sum_{\nu \vdash nm} a_{n,m}^{\nu} = \langle 1, N^m \rangle_{\mathfrak{S}_n} = \#T(n,m)/\sim.$$

Example

We compute that $s_3[s_3] = s_9 + s_{72} + s_{63} + s_{522} + s_{441}$.

Correspondingly, there are five elements of $T(3,3)/\sim$, represented by

$$\begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}, \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 2 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

Assigning matrices to partitions

Question. Can we define a function $\phi_{n,m}:T(n,m)/\sim \to \{\nu \vdash nm\}$ such that $a^{\nu}_{n,m}=\#(\phi_{n,m})^{-1}(\nu)$?

An analogous problem

Young's rule implies that

$$(s_m)^n = \sum_{\nu \vdash nm} K_{\nu,m^n} s_{\nu}$$

where $K_{\lambda,\mu}$ denote the Kostka numbers.

The RSK algorithm can be used to assign a partition $\nu \vdash nm$ to each $n \times n$ nonnegative integer symmetric matrix A with row and column sums m. Namely, we apply the RSK algorithm to A and take ν to be the shape of either of the resulting tableaux.

This shows that

$$\sum_{\nu \vdash nm} K_{\nu,m^n} = N^m(1_{\mathfrak{S}_n}).$$

References

- 1] Y. Agaoka. "Decomposition formulas of the plethysm $\{m\} \otimes \{\mu\}$ with $|\mu| = 3$ ". In: Hiroshima University (2002).
- [2] G. James and A. Kerber. The Representation Theory of the Symmetric Group. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1984.
- T. Kahle and M. Michałek. "Plethysm and lattice point counting". In: Foundations of Computational Mathematics 16.5 (2016), pp. 1241–1261.
- [4] R. P. Stanley. Enumerative Combinatorics. 2nd ed. Vol. 2. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2023.

FPSAC 2025 mylim@umich.edu