Degenerating brick manifolds and cubulating the associahedron

Raj Gandhi and Gabe Udell Cornell University

The associahedron

The *n*-dimensional associahedron has vertices correspond to triangulations of an *n*-gon which are connected by an edge when they only differ in the placement of one diagonal. There are multiple realizations of the associahedron as a lattice polytope, but Lodau's realization may be the most famous.

Fig. 1: Image of Loday's associahedron from [PS12]

Toric Varieties

Definition

- A torus is an algebraic group which is isomorphic to the group $(\mathbb{C}^\times)^n=(\mathbb{C}\setminus\{0\})^n$ for some n.
- \bullet A normal variety with an algebraic action of some torus T is called a **toric variety** if it has a dense T orbit.

Given a lattice polytope $P\subseteq\mathbb{R}^n$, we can construct a corresponding projective toric variety

$$X_P := \operatorname{Proj} \mathbb{C} \left[\overline{\mathbb{R}_+(P \times \{1\})} \cap \mathbb{Z}^{n+1} \right]$$

with proj grading given by the last coordinate. P and X_P encode exactly the same information, so there is a convex geometry to algebraic geometry dictionary:

Convex Geometry	Algebraic Geometry
Polyhedral fan	abstract toric variety
Polytope P	$X_P \hookrightarrow \mathbb{P}^n$ toric variety
$\dim_{\mathbb{R}}$	$\dim_{\mathbb{C}}$
vertices	T-fixed points
# lattice points in kP	$\dim H^0(X_P, \mathcal{O}_{X_P}(k))$
simple	rationally smooth
regular polyhedral subdivision	Gröbner degeneration

Every algebraic action of $T=(\mathbb{C}^\times)^k$ on \mathbb{P}^n is of the form

$$(t_1,\ldots,t_k)\cdot(x_1:\cdots:x_m)=(x_1\prod_{i=1}^k t_i^{w_{1,i}}:\cdots:x_m\prod_{i=1}^k t_i^{w_{m,i}})$$

with $w_{j,i} \in \mathbb{Z}$. A T-fixed point p of a T-equivariantly embedded variety $t\colon X \hookrightarrow \mathbb{P}^n$ such that $\iota(p) = \{0: \dots : 0: x_j: 0: \dots : 0\} \in \mathbb{P}^n$ corresponds to a vertex $\{w_{j,1}, w_{j,2}, \dots, w_{j,k}\} \in \mathbb{Z}^k$. The polytope associated to X is the convex hull of all such vertices.

Gröbner degenerations

A Gröbner degeneration of an affine variety amounts to replacing V(I) with $V(\operatorname{init}_{\leq}(I))$ for some monomial ordering \leq . Moment polytopes of the irreducible components of the degeneration subdivide the original moment polytope and all 'regular' polyhedral subdivisions arise in this manner [Stu91].

Toric variety of the associahedron

Definition

- \bullet The Grassmannian ${\rm Gr}_{k,n}$ is a projective variety whose points correspond to $k\text{-}{\rm dimensional}$ vector subspaces of \mathbb{C}^n
- The (full) flag variety FI_n is a projective variety whose points correspond to full flags $\{0\} = F_0 < F_1 < \dots < F_{n-1} < F_n = \mathbb{C}^n$ where F_i is a vector space of dimension i

For $Q=q_1\cdots q_k$ a word in the alphabet $\{1,\ldots,n-1\}$, $\operatorname{Brick}^Q\subseteq\operatorname{Gr}_{q_1,n}\times\operatorname{Gr}_{q_2,n}\times\cdots\times\operatorname{Gr}_{q_k,n}\hookrightarrow\operatorname{Fl}_n^k$. Viewed as a subset of Fl_n^k , the brick manifold Brick^Q consists of

Viewed as a subset of Fl_n^k , the brick manifold Brick^Q consists of all sequences of flags $(F_1, F_2, \dots, F_k) \in \mathsf{Fl}_n^k$ such that F_{i-1} and F_i differ only in their q_i dimensional part, F_k is required to be the flag with i-dimensional part equal to $\langle \mathsf{e}_n, \mathsf{e}_{n-1}, \dots, \mathsf{e}_{n-i+1} \rangle$, and F_0 denotes the flag with i-th dimensional part equal to $\langle \mathsf{e}_1, \dots, \mathsf{e}_k \rangle$.

Theorem [Esc16

The toric variety of Loday's realization of the n-dimensional associahedron is given by Brick^Q for $Q=1,2,\ldots,n-1,1,2,\ldots,n-1,1,2,\ldots,n-1,1,2,1,2,1$.

Fig. 2: The space of (V₁, V₂, V₃) satisfying the above inclusions is Brick¹²¹²¹ It is the toric variety of Loday's realization of the 2D associahedron

Fig. 3: Brick 123123121 is the toric variety of the 3D associahedron and is constructed as the moduli space of (V_1,V_2,\ldots,V_9) satisfying the inclusions of the above magyar diagram.

Considering the flags $V_1\subseteq V_2\subseteq V_3,\ V_4\subseteq V_5\subseteq V_6,\ \text{and}\ V_7\subseteq V_8\subseteq V_6$ in Fig. 3 affords a useful embedding of Brick 123123121 into Fl $_4^3$

Torus fixed points

Let $T \cong (\mathbb{C}^\times)^n$ be the group of $n \times n$ diagonal matrices with nonzero diagonal entries. The action of T on \mathbb{C}^n extends to an action on $\mathrm{Gr}_{k,n}$ by $t \cdot V = \{t \cdot \mathbf{x} : \mathbf{x} \in V\}$ and then on Fl_n by $(t \cdot F_k)_t = t \cdot F_k$.

Linear subspaces $V \leq \mathbb{C}^n$ such that $t \cdot V = V$ for all $t \in T^n$ are exactly the coordinate subspace $V = \operatorname{Span}\{e_{i_1}, \dots, e_{i_k}\}$.

$$|\mathsf{Gr}_{k,n}^{T^n}| = \binom{n}{k}$$

Flags F on \mathbb{C}^n such that $t \cdot F = F$ for all $t \in T$ are exactly flags such that each F_i is a coordinate subspace. $|FI_n^T| = n!$ A point (V_1, \dots, V_k) of the brick variety is a torus fixed point iff each V_i is a coordinate subspace.

For Brick 12121 the fixed points are:

V_1	V_2	V_3	V_4	V ₅	Corresponding vertex
			$\langle e_2, e_3 \rangle$		
$\langle e_1 \rangle$	$\langle e_1, e_3 \rangle$	$\langle e_3 \rangle$	$\langle e_2, e_3 \rangle$	$\langle e_3 \rangle$	(3, 2, 2)
$\langle e_2 \rangle$	$\langle e_1, e_2 \rangle$	$\langle e_2 \rangle$	$\langle e_2, e_3 \rangle$	$\langle e_3 \rangle$	(2, 5, 1)
$\langle e_2 \rangle$	$\langle e_2, e_3 \rangle$	$\langle e_2 \rangle$	$\langle e_2, e_3 \rangle$	$\langle e_3 \rangle$	(1, 5, 2)
$\langle e_2 \rangle$	$\langle e_2, e_3 \rangle$	$\langle e_3 \rangle$	$\langle e_2, e_3 \rangle$	$\langle e_3 \rangle$	(1, 4, 3)

A cubulation of the associahedron

Using Escobar's construction of the brick variety below and the 'orbit degeneration' of [KMS06], we get a subdivision of the n-dimensional associahedron into pieces which are combinatorially cubes. The subdivision has n! cubes and (n+1)! vertices.

Bruhat order and Bruhat Interval Polytopes

age credit: Adam Hammett and Boris

Definition

- The simple reflection s_i transposes i and i+1
- A word for a permutation π is a sequence of simple reflections q_1,q_2,\ldots,q_k so that $\pi=q_1\cdot q_2\cdots q_k$. A reduced word for π is a word for π with minimal length $\ell(\pi)$
- $\pi \leq \tau$ in Bruhat order if every reduced word for τ contains a reduced word for π as a subword

The greatest element of Bruhat order is $w_0 = n - n - 1 \dots$

Definition [BEW24; KW15

For $u,v\in S_n$, the twisted Bruhat interval polytope $Q_{u,v}$ is the convex hull of $(n+1-w^{-1}(1),n+1-w^{-1}(2),\ldots,n+1-w^{-1}(n))$ for $u\leq w\leq v$

Theorem [LMP21]

If $uv^{-1} = s_k s_{k-1} \cdots s_{k-r}$ then $Q_{u,v}$ is combinatorially a cube

Results

Let $a_i = s_1 s_2 \dots s_{n-i+1} \in S_n$ for $2 \le i \le n$ and $a_1 = a_2$

Definition

The Minkowski sum of sets is $S_1+S_2:=\{a+b:a\in S_1,b\in S_2\}$

Theorem [Gandhi-U]

Loday's realization of the n-1 dimensional associahedron is equal (up to translation) to the Minkowski decomposition $\sum_{i=1}^{n} q_{i}$

is equal tup to danstation) to the Minkowsk decomposition $\sum_{i=1}^n Q_{n_i}, s_{i,j+1}, s_{n-i,n}$ where $a_j = \bigcap_{i=2}^n Q_i$. Additionally it has a mixed subdivision into (n-1)! cubes given by $\bigcup_{u_i} \sum_{i=1}^n Q_{u_i a_i, u_{i+1}}$ where the union is taken over sequences $u_i \in \{s_i\}^n$ where $u_1 = id, u_{i+1} \leq u_i a_i, \ \ell(u_i a_i) = \ell(u_i) + \ell(a_i), \text{ and } u_{n+1} = w_0$

References

[Stu91] Bernd Sturmfels. "Gröbner bases of toric varieties". In: *Tohoku Math. J. (2)* 43.2 (1991), pp. 249–261.

[EMS06] Allen Knutson, Ezra Miller, and Mark Shimozon. "Four positive formulae for type A quiver polynomials". In: Invent. Math. 166.2 (2006), pp. 229–325. [PS12] Vincent Pilaud and Francisco Santos. "The brick polytope of a sorting network". In: European J. Combin. 33.4 (2012), pp. 632–662.

[PS12] Vincent Pilaud and Francisco Santos. "The brick polytope of a sorting network". In: European J. Combin. 33.4 (2012), pp. 632–662.
[KW15] Yuji Kodama and Lauren Williams. "The full Kostant-Toda hierarchy on the positive flag variety". In: Comm. Math. Phys. 335.1 (2015), pp. 247–283. ISSN: 0010-3616,1432-0916.

[Esc16] Laura Escobar. "Brick manifolds and toric varieties of brick polytopes". In: Electron. J. Combin. 23.2 (2016), Paper 2.25, 18.

[LMP21] Eunjeong Lee, Mikiya Masuda, and Seonjeong Park. "Toric Bruhat interval polytopes". In: J. Combin. Theory Ser. A 179 (2021), Paper No. 105387, 41.

[EEWI24] Jonathan Boretsky, Christopher Eur, and Lauren Williams. "Polyhedral and tropical geometry of flag positroids". In: Algebra Number Theory 18.7 (2024), pp. 1333–1374.