Degenerating brick manifolds and cubulating
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, The associahedron

| angulations of an n-gon which are connected by an edge when
| they only differ in the placement of one diagonal. There are mul-
| tiple realizations of the associahedron as a lattice polytope, but

Loday'’s realization may be the most famous. )
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| The n-dimensional associahedron has vertices correspond to tri- |
|
\

|

{ Fig. 1: Image of Loday's associahedron from [PS12] /\/J
|

- O OO0

o S S
Toric Varieties

Wl Definition
e A torus is an algebraic group which is isomorphic to the | |
/ group (C*)" = (C\ {0})" for some n. |

| o A normal variety with an algebraic action of some torus T
| is called a toric variety if it has a dense T orbit.

|
|
| Given a lattice polytope P C R", we can construct a correspond- ‘\
| ing projective toric variety >
\
|

{ Xp := ProjC [qu < (11N Z”“]
| with proj grading given by the last coordinate.

| P and Xp encode exactly the same information, so there is a
| convex geometry to algebraic geometry dictionary:

| Convex Geometry Algebraic Geometry
\ Polyhedral fan abstract toric variety
(

|

Polytope P Xp — P" toric variety |
dimg dimg ‘

vertices T-fixed points
L # lattice points in kP dim HO(XP,OX/,(k))
) simple rationally smooth

{ regular polyhedral subdivision|Grébner degeneration

| Every algebraic action of T = ((Cx)k on P" is of the form

|t G ) = O Tl 7 xa T )

| with w;; € Z. A T-fixed point p of a T-equivariantly embedded
\ variety 1: X < P" such that ((p) = (0:---:0:x;:0:---:0) € P"
| corresponds to a vertex (w; 1, Wjo,..., Wjk) € ZK. The polytope

associated to X is the convex hull of all such vertices. \

| Grobner degenerations

| A Grobner degeneration of an affine variety amounts to replac-

ing V(/) with V(init<(/)) for some monomial ordering <. Moment
( polytopes of the irreducible components of the degeneration sub-
\ divide the original moment polytope and all ‘regular’ polyhedral
| subdivisions arise in this manner [Stu91].
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| Toric variety of the associahedron

“ e The Grassmannian Gry , is a projective variety whose points
| correspond to k-dimensional vector subspaces of C"

\ o The (full) flag variety Fl, is a projective variety whose points
‘ correspond to full flags {0} = Fp < Fy < -+ < Fp_1 < Fp =
[ C" where F; is a vector space of dimension i

For Q = qq--- g a word in the alphabet {1,...,n —1},

Brick® C Grg,,n % Grgyn % -+ x Grg,,n < FI.

Viewed as a subset of Fl‘;, the brick manifold Brick® consists of
all sequences of flags (Fq, Fp, ..., Fg) € Flﬁ such that F;_q and F;
differ only in their q; dimensional part, Fy is required to be the
flag with i-dimensional part equal to (en, ep—1,...,€q_i+1), and
Fo denotes the flag with i-th dimensional part equal to {eq, ..., ;).

-

M Theorem [Esc16]

| The toric variety of Loday's realization of the n-dimensional
| | associahedron is given by Brick? for Q = 1,2,....n —
1120 =11,2,00,0=2,...,1,2,3,1,2,1.
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Fig. 2: The space of (V4, V3, V3) satislying the above inclusions is Brick'*'?!.

Vi ={(eze3)

V5= (e3)

It is the toric variety of Loday's realization of the 2D associahedron

ct

e

) {e1.e2.e3) Vo = (eq.e3.€2)

( e q;/ ™~ v/VJ\v . Vo=tency)

“ (!|)/ | \va/ Z\V,‘/ s’\‘v,/‘ Vo = (e4)
T ———

| Fig. 3: Brick'?%12! is the toric variety of the 3D associahedron and is

|| constructed as the moduli space of (V4, V2, .., Vo) satisfying the inclusions
| of the above magyar diagram.

‘\ Considering the flags V4 € Vo, C V3, V4 C V5 C Vg, and V7 C Vg C
312312 to Fl}

) Vg in Fig. 3 affords a useful embedding of Brick’

/ Torus fixed points

| Let T = (CX)" be the group of n x n diagonal matrices with
| nonzero diagonal entries. The action of 7 on C" extends to an
action on Gry , by t -V = {t-x:x € V} and then on Fl, by
(t-Fe)i=t-F.
Linear subspaces V < C" such that t-V = Vforall t € T" are
exactly the coordinate subspace V = Span{e;,, ..., e;}.

n n
iorfal= ()

Flags F on C" such that t- F = F for all t € T are exactly flags
such that each F; is a coordinate subspace. |FL]| = n!

A point (Vq,..., V) of the brick variety is a torus
fixed point iff each V; is a coordinate subspace.

For Brick!?121 the fixed points are:

Vil Vo | V5] Va4 | Vs |Corresponding vertex

N —

(eq) [(e1. e2)[(e2) [(e2, e3)[(e3) (3.4.1)
(e1)|(e1, e3)| (e3) [(e2. €3) |(e3) (3.2.2)
(e2)|(e1, e2)| {e2) [(e2. €3) |(e3) (2,5.1)
(e2) (e, e3)| (e2) [(e2, €3) |(e3) (1,5,2)
(e2) [(e2, e3)| (e3) |(e2, e3)|{e3) (1.4.3)
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| A cubulation of the associahedron

| Using Escobar’s construction of the brick variety below and the 1
‘ ‘orbit degeneration’ of [KMS06], we get a subdivision of the n- |
| dimensional associahedron into pieces which are combinatorially |
| cubes. The subdivision has n! cubes and (n + 1)! vertices. /

wdgy

“‘ Iruhat order and Bruhat Interval

. Polytopes
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( © The simple reflection s; transposes i and i + 1 \
| o A word for a permutation 7 is a sequence of simple reflec-
“ tions qq,q2,...,q) so that m = q1 - q2--- qk. A reduced |
| word for 7 is a word for 7 with minimal length ¢()
‘\ e 7t < 7 in Bruhat order if every reduced word for t contains
J L e reduced word for 7 as a subword )|
“ The greatest element of Bruhat orderiswp=n n—-1 ... 1 “
‘ |
J
{ For u,v € Sp, the twisted Bruhat interval polytope Qy,y is the
| convex hull of (n+1 —W_1(1), n+1—w‘1(2), oan+l —w‘11n)) \
| 7

\ foru<w<v {
\

L Theorem [LMP21] |

| | Wuv™" = sgsi_q - se_, then Qy,y is combinatorially a cube (

| Results

<‘ Let a;=5152...5,_j41 € Spfor2< i< nand a1 = ay

|

The Minkowski sum of sets is S1+ Sy :={a+b:a € Sy,b e
So}

Theorem [Gandhi-U]

Loday’s realization of the n — 1 dimensional associahedron
is equal (up to translation) to the Minkowski decomposition

371 Qaysyspy1..5010 where aj = [1/_y ai.

Additionally it has a mixed subdivision into (n — 1)! cubes
given by U”‘Z?ﬂ Quia;,u;,, where the union is taken over
sequences ue € (Sp)" where uq = id, uiq < vjag, buja) =
O(u;) + £(a;), and upq = wy
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