

Log-concavity and log-convexity via distributive lattices

Jinting Liang* (University of British Columbia), Bruce Sagan (Michigan State University)

Log-concavity, log-convexity, and distributive lattices

Consider a sequence of real numbers $(a_n)=(a_n)_{n\geq 0}=a_0,a_1,a_2,\ldots$ Say that (a_n) is \log -concave if, for all $n\geq 1$, we have

 $a_n^2 \ge a_{n-1}a_{n+1}.$

Say that (a_n) is \log -convex if, for all $n \ge 1$, we have

 $a_n^2 \le a_{n-1} a_{n+1}.$

set). A **lower (order) ideal** of P is $I \subseteq P$ such that $x \in I$ and $y \preceq x$ implies $y \in I$. An **upper (order) ideal** of P is $J \subseteq P$ such that

 $x \in J$ and $y \succeq x$ implies $y \in J$.

Let $P = (P, \preceq)$ be a poset (partially ordered

Say that poset L is a **distributive lattice** if every pair $x,y\in L$ has a greatest lower bound or **meet**, $x\wedge y$, as well as a least upper bound or **join**, $x\vee y$, and it satisfies either of the two equivalent distributive laws. Our main tool follows from the FKG inequality [FKG71].

New tool: Order Ideal Lemma

Let L be a distributive lattice and suppose that $I,J\subseteq L$ are ideals.

(a) If I,J are both lower ideals or both upper ideals then

 $|I|\cdot |J| \leq |I\cap J|\cdot |L|.$

b) If one of I,J is a lower ideal and the other is upper then $|I|\cdot|J|\geq |I\cap J|\cdot |L|.$

Strategy

Our general strategy for proving log-convexity of a sequence $(a_n)_{n\geq 0}$:

- Construct distributive lattices L_n with $|L_n| = a_n$;
- Find inside L_{n+1} two lower order ideals I,J such that $|I|=|J|=a_n$ and $|I\cap J|=a_{n-1}.$

Then we will be done by part (a) of the Order Ideal Lemma. Similarly, part (b) can be used to prove log-concavity.

Application 1: Catalan numbers

The ubiquitous **Catalan numbers** can be explicitly given as $\begin{pmatrix} 2n \\ 1 \end{pmatrix}$

$$C_n = \frac{1}{n+1} \binom{2n}{n}.$$

A Dyck path of semilength n is a lattice path P satisfying:

- 1. P starts at (0,0) and ends at (2n,0):
- 2. P uses up steps U parallel to [1,1] and down steps D parallel to [1,-1];
- 3. never goes below the x-axis.

Figure 1. The poset \mathcal{D}_3

Let \mathcal{D}_n be the set of all Dyck paths of semilength n. It is well known that $C_n = |\mathcal{D}_n|$. If $P \in \mathcal{D}_m$ then let A(P) be the physical area enclosed by P and the x-axis. Turn \mathcal{D}_n into a poset by letting

$$P \preceq Q \iff A(P) \subseteq A(Q).$$

See Figure 1 for the poset \mathcal{D}_3 . For all $n \geq 0$ we have that \mathcal{D}_n is a distributive lattice [FPO5].

Theorem. The sequence (C_n) is log-convex.

Proof (L-Sagan). Let $L=\mathcal{D}_{n+1}$ so that $|L|=C_{n+1}$. The maximal element in \mathcal{D}_n is the path U^nD^n . Construct the lower ideals

$$I = \{ P \in L \mid P \preceq U^n D^n U D \}, \quad J = \{ P \in L \mid P \preceq U D U^n D^n \}.$$

Therefore
$$I\cong J\cong \mathcal{D}_n$$
 so that $|I|=|J|=C_n$. Also
$$I\cap J=\{P\in I\mid P\prec IIDII^{n-1}D^{n-1}IID\}.$$

$$I \cap J = \{P \in L \mid P \preceq UDU^{n-1}D^{n-1}UD\}.$$

Therefore
$$I\cap J\cong \mathcal{D}_{n-1}$$
 so that $|I\cap J|=C_{n-1}$. Thus, by the Order Ideal Lemma
$$C_n^2=|I|\cdot |J|\leq |I\cap J|\cdot |L|=C_{n-1}C_{n+1}$$
 as desired.

Application 2: Order polynomials

For a positive integer p we let $[p] = \{1, 2, \dots, p\}$. Let (P, \preceq) be a poset on [p]. A P-partition with range [n] is a map $f: P \to [n]$ such that for all $x \prec y$:

- 1. $f(x) \ge f(y)$, i.e., f is order reversing, and
- 2. If x > y then f(x) > f(y).
- Let

$$\mathcal{O}_P(n) = \{f \mid f \text{ is a } P\text{-partition with range } [n]\}.$$

Example of P-partitions. If p=3 and

The **order polynomial** of P is

$$\Omega_P(n) = |\mathcal{O}_P(n)|.$$

Turn $\mathcal{O}_P(n)$ into a poset by letting

$$f \preceq g \iff f(x) \leq g(x) \text{ for all } x \in P.$$

See Figure 2 for an example of $\mathcal{O}_P(3)$ with P in the previous example.

The resulting poset is in facta distributive lattice. Together with Order Ideal Lemma, we prove:

FPSAC 2025, Sapporo

Theorem (L-Sagan). For any P on [p], the sequence $(\Omega_P(n))_{n\geq 1}$ is log-concave.

▶ This result was proved in the special case of naturally labeled P by Chan, Pak and Panova [CPP33]. It also leads to the log-concavity of $(s_{\lambda}(1^n))_{n\geq 0}$, a sequence of specializations of Schur functions.

Other results

Figure 2. The poset $\mathcal{O}_P(3)$

▶ Call a_0, a_1, a_2, \dots log-concave at n if $a_n^2 \ge a_{n-1}a_{n+1}$. Similarly define being log-convex at n. A sequence (ℓ_n) of real numbers is a generalized Lucas sequence if it satisfies the recursion

$$\ell_n = \ell_{n-1} + \ell_{n-2}$$

for $n \ge 2$. Using the Order Ideal Lemma we prove that the sequence (ℓ_n) is log-concave at odd indices and log-convex at even ones.

The Stirling numbers of the second kind are

S(n,k) = number of partitions of [n] into k subsets (blocks).

By defining a new poset on such partitions which is a distributive lattice, we have proved that for fixed k, the sequence $(S(n,k))_{n\geq 0}$ is log-concave.

Challange Conjecture

Recall that the signless Stirling numbers of the first kind are

 $c(n,k)=\#\{\pi\in\mathfrak{S}_n\mid\pi\ \text{has}\ k\ \text{cycles}\ \text{in its}\ \text{disjoint cycle}\ \text{decomposition}\}.$ We have checked the following conjecture for $1\le k\le n\le 100.$

Conjecture: Given k, there is an integer N_k such that $(c(n,k))_{n\geq 0}$ is log-concave for $n< N_k$ and log-convex for $n\geq N_k$.

Full details are available in [LS].

cererences

[CPP23] Swee Hong Chan, Igor Pak, and Greta Panova, Effective poset inequalities, SIAM J. Discrete Math. 37 (2023) no. 3, 1842–1880. MR 4631443

[FKG71] C. M. Fortuin, P. W. Kasteleyn, and J. Ginibre, Correlation inequalities on some partially ordered sets, Comm. Math. Phys. 22 (1971), 89–103. NR 309498

[FP05] Luca Ferrali and Renzo Pinzani Lottices of lottice paths, J. Statist, Plann. Inference 135 (2005), no. 1, 77–92.
MR 2202340
[LS] Jinting Liang and Bruce E. Sagan, Log-concority and log-convexity via distributive lottices, Preprint arXiv:2406.027824.

[Ste97] John R. Stembridge, Enriched P-partitions, Trans. Amer. Math. Soc. 349 (1997), no. 2, 763–788. MR 13,89788

liangj@math.ubc.ca