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Alcoved polytopes

A polytope in Hn = {x1 + · · · + xn = 0} ⊂ Rn is alcoved if all its facet normals

are parallel to the roots ei − ej for some i 6= j ∈ [n]. Equivalently, a polytope

is alcoved if it is determined by the parameters ai,j ∈ R for 1 ≤ i, j, ≤ n via the

equation x1 + · · · + xn = 0 and the inequalities

xi − xj ≤ ai,j for all i, j ∈ [n], i 6= j. (1)

Unlike some other families of polytopes alcoved polytopes are not closed un-

der Minkowski sums in general. This naturally raises the question when alcoved

polytopes add.

Main question

How to characterize pairs of alcoved polytopes P, Q ⊆ Hn, such that their

Minkowski sum P + Q is alcoved?

Somemotivation

The cone of alcoved polytopes (given by triangle inequolities in ai,j) has a

natural fan structure given by combinatorial alcoved polytopes. This is called

type fan of alcoved polytopes. Understanding combinatorics of type fan is

equivalent to understanding the compatibility of alcoved polytopes.

Binary geometries are affine varieties with stratifications determined by certain

simplicial complexes. Classical example of binary geometry come from a

presentation of the associahedron as a Minkowski sum of symplices and a

more recent one come from analogous presentaion for pellytopes. In both

cases, all polytopes involved are alcoved.

Certain scattering amplitudes may be presented as ε → 0 limit of integrals of the

following form called stringy integrals:∫
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where f (y) are some given irreducible polynomials. In the case when the

Minkowski sum of the Newton polytopes of f is the ABHY associahedron, it

produces the classical Koba-Nielsen string integral. We are interested in more

general alcoved polytopes.

Flag property for type fan

Our first result shows that the type fan satisfy a flag property. In particular, this

implies that to understand combinatorics of type fan it is enough to understand

which pairs of alcoved polytopes are compatible.

Theorem (Nick Early, Lukas Kühne, LM)

LetP1, . . . , Pk be alcoved polytopes inHn. SupposePi andPj are pairwise compatible

for all i 6= j ∈ [n]. Then the entire collection is compatible, i.e., P1+· · ·+Pk is alcoved.

Alcoved simplices

An ordered set partition of the set [n] is an ordered tuple S = (B1, . . . , B`) of pair-
wise disjoint subsets Bi ⊆ [n] with ∪`

j=1Bj = [n].

To each ordered set partition S = (B1, . . . , B`) of [n] we associate an alcoved

simplex ∆S in the hyperplane Hn defined by the following set of (in)equalities:

xi = xj for every i, j ∈ Bk and every 1 ≤ k ≤ `,

xi ≥ xj for every i ∈ Bk, j ∈ Bk+1 and every 1 ≤ k ≤ ` − 1,

xi ≥ xj − 1 for every i ∈ B`, j ∈ B1.

Theorem

Every alcoved simplex in Hn is equal to ∆S for some ordered set partition S up to shift

and dilation.

We will encode combinatorics of ∆S in a graph a graph G§ as a partially directed

graph on n vertices which has

an undirected clique on the set Bi;

directed edge bi → bi+1 for 1 ≤ i ≤ ` (regarded cyclically) where bj ∈ Bj is the

smallest element of a block Bj.

Example

The alcoved simplex ∆(1,2 3,4) in R4 of the ordered set partition (1, 2 3, 4) is de-
fined by x1 + · · · + x4 = 0 and the (in)equalities

x1 ≥ x2 = x3 ≥ x4 ≥ x1 − 1.

Its vertices are (0, 0, 0, 0),
(3

4, −1
4, −1

4, −1
4
)
and

(1
4,

1
4,

1
4, −3

4
)
. The graph G(1,2 3,4) is

depicted below.
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Figure 1. The graph GS of the ordered set partition S = (1, 2 3, 4).

Compatibility of alcoved simplices

Let us denote by GS,T to be the union GS ∪ Gop
T . We call edges in GS upper and

those in Gop
T lower.

Let C be a cycle in GS,T. An upper path segment of C is a collection of consec-

utive upper edges in C . We call a cycle violating if it has at least two disjoint

upper path segments and visits every vertex of GS,T at most once.

Theorem (Nick Early, Lukas Kühne, LM)

The ordered set partitions S, T on [n] are compatible if and only if GS,T does not have

a violating cycle.

Interlacing and compatibility

We call order set partitions S, T 4-interlaced if there exist 4 distinct elements

a, b, c, d ∈ [n] such that the ordered set partitions of S and T restrict to respec-

tively

S|a,b,c,d = (a, b, c, d) and T|a,b,c,d = (c, b, a, d).

We say that S and T are 6-interlaced if there exist 6 distinct elements

a, b, c, d, e, f ∈ [n] such that the ordered set partitions of S and T restricts re-

spectively to one of the two pairs

S|a,b,c,d,e,f = (a, b, c, d, e, f ) and T|a,b,c,d,e,f = (c, d, a, b, e, f ).
S|a,b,c,d,e,f = (a, b, c, d, e, f ) and T|a,b,c,d,e,f = (a, d, e, b, c, f );

Remarkably, these three cases completely characterize compatible nondegener-

ate partitions.

Theorem (Nick Early, Lukas Kühne, LM)

Let S and T be two nondegenerate ordered set partitions. Then S and T are not

compatible if and only if they are 4- or 6-interlaced.
In particular, S and T are compatible if and only if SI and TI are compatible for any

I of size at most 6.

Cyclic pattern avoidance

A pair of nondegenerate set partitions (or cyclic orders) S and T defines a

cyclic permutation πS,T. Moreover, S and T are 4–interlaced if πS,T (cyclically)

contains the pattern 1432 and 6-interlaced if it contains the patterns 125634 or
145236. Thus, nondegenerate set partitions S and T are compatible if and only

if πS,T is avoiding the above three patterns.

The cyclohedron and the assosiahedron

One can show that the cyclohedron Cn and the assosiahedron An are Minkowski

sums of compatible alcoved simplices and thus are alcoved polytopes:

The cyclohedron is normally equivalent to the Minkowski sum over all coars-

enings of the OSP (1, 2, . . . , n) such that at most one block has more than one

element.

The associahedron normally equivalent to the Minkowski sum over all coarsen-

ings of the OSP (1, 2, . . . , n) such that at most one block has more than one

element and n is in this largest block.

In particular we get:

C4 = ∆(1,2,3,4)+∆(1,2,34)+∆(1,23,4)+∆(12,3,4)+∆(2,3,41)+∆(1,234)+∆(123,4)+∆(3,412)+∆(2,341).

A4 = ∆(1,2,3,4) + ∆(1,2,34) + ∆(2,3,41) + ∆(1,234) + ∆(3,412) + ∆(2,341).


