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Abstract
The fundamental connections of the Grassmannian with both
weak separability and Plücker relations are well known. On
the totally nonnegative (TNN) part of the Grassmannian, we
discover the intrinsic connection between weak separability
and Plücker relations. In particular, we show that certain
natural sums of terms in a long Plücker relation for pairs of
weakly separated Plücker coordinates oscillate around 0 over
the TNN Grassmannian. This generalizes the classical os-
cillating inequalities by Gantmacher–Krein (1941) and recent
results on TNN matrix inequalities by Fallat–Vishwakarma
(2024). In fact we obtain a characterization of weak separa-
bility, by showing that no other pairs of Plücker coordinates
satisfy this property. In summary, this uncovers connections
between weak separability, Plücker relations, and Temperley–
Lieb immanants, and provides a natural and general class of
additive inequalities in TNN Grassmannians.

Totally nonnegative matrices
Definition 1. A real matrix A is totally nonnegative (TNN) if detB ≥ 0
for all square submatrices B of A.

The n × n TNN matrices identify with directed acyclic planar networks
with nonnegative weights with source and sink {1, · · · , n}. (Gessel–Viennot,
Adv. Math. 1985; Lindström, Bull. London Math. Soc. 1973; Whitney, J.
Anal. Math. 1952)

Notations 2. Let 1 ≤ m ≤ n be integers.
• [m,n] := {m, . . . , n}, and [n] := [1, n] whenever n ≥ 1.

• For an n×m matrix A, and subsets P ⊆ [n] and Q ⊆ [m], define

• AP,Q is the submatrix with row indices P and column indices Q.

• Ajk := A[n]\{j},[m]\{k}.
• k ± S = {k ± s : s ∈ S}, for all k ∈ Z.

We begin with Gantmacher–Krein

For a 4× 4 TNN matrix A:

detA = a11 detA11 − a12 detA12 + a13 detA13 − a14 detA14

detA ≤ a11 detA11 − a12 detA12 + a13 detA13

detA ≥ a11 detA11 − a12 detA12

detA ≤ a11 detA11

More generally, the following holds:

Theorem 3 (Gantmacher–Krein, 1941). Fix integers 1 ≤ l ≤ n. Then for
all TNN A := (aij)n×n,

l∑

k=1

(−1)1+ka1k detA1k

{
≥ detA if l is odd, and
≤ detA otherwise.

These inequalities refine the Laplace expansion along the first row for
TNN matrices. Recent work [1] extends this by deriving similar oscillat-
ing inequalities from the generalized Laplace expansion along the first d
rows.

Theorem 4 ([1]). Let 1 ≤ d ≤ n be integers, and suppose Qdk := [n −
d, n] \ {n− d+ k} for k ∈ [0, d]. Then the following holds for all l ∈ [0, d]
and all n× n TNN A:

(−1)1+l
l∑

k=0

(−1)1+k detA[1,d],Qdk
detA[n]\[1,d],[n]\Qdk

≥ 0.

In the same work, “Gantmacher–Krein-type” inequalities are obtained for
the classical Karlin’s identity, thus refining it for TNN matrices:

Theorem 5 ([1]). Let n ≥ 1 be an integer. Suppose T ⊆ [n] and V :=
{v1 < · · · < vn′} = [n] \ T. Then for all An×n TNN, all p ∈ [n] with set S
such that S ⊆ [n] \ {p} and |S| = |T | + 1, and all l ∈ [n′],

(−1)1+l
l∑

k=1

(−1)1+k detAS,T∪{vk} detA[n]\{p},[n]\{vk} ≥ 0.

Is there one phenomenon behind
all these inequalities?

Grassmannian and Plücker relations
For integers 1 ≤ m ≤ n, Gr(m,m + n) := manifold of m dimensional
vector subspaces of Rm+n. This identifies with the full rank real matrices
A(m+n)×m quotiented on the right by invertible matrices. The Plücker

coordinates ∆I(A) := detAI,[m] for ordered I ∈
([m+n]

m

)
satisfy the well-

known Plücker relations:

∆(i1,...,im) ·∆(j1,...,jm) =

m∑

k=1

∆(jk,i2,...,im) ·∆(j1,...,jk−1,i1,jk+1,...,jm)

for all i1, . . . , im, j1, . . . , jm ∈ [m + n]. Here ∆(i1,...,im) = ∆{i1,...,im} if

i1 < · · · < im and ∆(i1,...,im) = (−1)sgn(w)∆(iw(1),...,iw(m))
for all w ∈ Sm.

What you can anticipate
For k, r ∈ [1,m], I = (i1, . . . , im), J = (j1, . . . , jm), Ik,r := (. . . , jk, . . . ),
Jk,r := (. . . , ir, . . . ), where jk and ir replace each other respectively:

∆I∆J =

m∑

k=1

∆Ik,r∆Jk,r over Gr(m,m + n) for all r ∈ [1,m].

The Plücker inequalities that we discover, look like

∆I∆J ≤
∑

k∈M
∆Ik,r∆Jk,r over Gr≥(m,m + n) for nice M ⊆ [1,m].

Totally nonnegative Grassmannian
The totally nonnegative Grassmannian Gr≥0(m,m + n) ⊆ Gr(m,m + n)
corresponds to matrices A(m+n)×m with all ∆I(A) ≥ 0. Here we have:

A =

(
A
W0

)
∈ Gr≥0(m,m + n) for all An×m TNN,

where W0 :=
(
(−1)i+1 · δj,m−i+1

)m
i,j=1, because detAP,Q = ∆I(A),

where I := P ∪
(
[m + 1,m + n] \ (m + n + 1−Q)

)
. Moreover [3],

∑

I,J

cI,J∆I(A)∆J(A) ≥ 0 ∀An×m TNN

⇐⇒
∑

I,J

cI,J∆I∆J ≥ 0 over Gr≥0(m,m + n).

The main result
Definition 7
Let 1 ≤ m ≤ n be integers and suppose I, J be m element ordered
subsets of [m+n]. Locate the elements of I, J on the circle with points
1, 2, . . . ,m + n marked in clockwise order.

• Call I, J weakly separated if I \ J and J \ I can be separated by a
chord in the circle.

• Suppose η = |I \ J | = |J \ I|. Let I \ J := {i1, . . . , iη} and J \ I :=
{j1, . . . , jη}, such that i1 <c · · · <c iη <c jη and i1 <c j1 <c · · · <c

jη in the clockwise order <c starting from i1.

• Examples for m = n = 6.

• For I = (1, 5, 3, 4, 10, 11) and J = (2, 6, 7, 8, 9, 11), a cyclical
order is (i1, i2, i3, i4, i5) = (10, 1, 3, 4, 5) and (j1, j2, j3, j4, j5) =
(2, 6, 7, 8, 9).

• And I = (1, 10, 3, 4, 2, 11) and J = (5, 8, 7, 6, 9, 11) are weakly
separated.
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Main Theorem A [3]
Consider the following system of oscillating inequalities for l, r ∈
[1, η], over Gr≥0(m,m + n):

sgn(Il,r) sgn(Jl,r)

l∑

k=1

∆Ik,r∆Jk,r ≥ 0 ∀ l < η − r + 1, and

sgn(Il,r) sgn(Jl,r)
( l∑

k=1

∆Ik,r∆Jk,r −∆I∆J

)
≥ 0 ∀ l ≥ η − r + 1.

This system holds for all l, r ∈ [1, η] iff I and J are weakly separated.

Think of these by looking at Plücker relations (for r0 = η − r + 1),

0 =

r0−1∑

k=1

∆Ik,r∆Jk,r +
(
∆Ir0,r

∆Jr0,r
−∆I∆J

)
+

m∑

k=r0+1

∆Ik,r∆Jk,r, and

(1) deleting terms from a fixed end; (2) getting inequalities at each step.

Back to Gantmacher–Krein
New inequalities along the 2nd row:
detA =− a21 detA21 + a22 detA22 − a23 detA23 + a24 detA24

0 =− a21 detA21 +
(
a22 detA22 − detA

)
− a23 detA23 + a24 detA24

0 ≥− a21 detA21 +
(
a22 detA22 − detA

)
− a23 detA23

0 ≤− a21 detA21 +
(
a22 detA22 − detA

)

0 ≥− a21 detA21

More generally, (for a special case of a main result not stated here) con-
sider adding the terms appearing in the Laplace expansion along kth row

(−1)k+1ak1 detAk1, akk detAkk, − detA, (−1)k+naknAkn,
. . . . . . . . . . . .

− ak,k−1 detAk,k−1, − ak,k+1 detAk,k+1,

one at a time, in any given order, such that we obtain inequalities at each
step. Then the sequence must (essentially!) be either the forward or the
backward of the sequence shown. This is exactly the sequence the cyclical
order yields.

Temperley–Lieb immanants
Let n ≥ 2 be an integer, and define Tn(2) be the C-algebra generated by
the “monoid” Bn formed by t1, . . . , tn−1 subject to relations:

t2i = 2ti, for i ∈ [1, n− 1],

titjti = ti, whenever |i− j| = 1, and
titj = tjti, whenever |i− j| ≥ 2.

Using the homomorphism σ : C[Sn]/(1+s1+s2+s1s2+s2s1+s1s2s3) →
Tn(2) via σ : si 7→ ti − 1, define the function

fK : Sn → R where fK(w) is the coefficient of K in σ(w),

for all K ∈ Bn. For the matrix x = (xij)n×n of indeterminates, define:

ImmfK(x) := ImmK(x) :=
∑

w∈Sn
fK(w)x1,w1

. . . xn,wn ∈ C[x].

Theorem 8 (Rhoades–Skandera [2]).
• All Temperley–Lieb immanants ImmK(x) are TNN.

• For identical multisets I ⋓ J, the following holds:
∑

I,J∈([2n]n )

cI,J∆I(x)∆J(x) ≥ 0 ∀ xn×n TNN

iff it is a nonnegative linear combination of Temperley–Lieb immanants.

To keep track of these immanants: the Kauffman diagrams corresponding
to each ∆I(x)∆J(x) can be drawn. Consider an example for n = 4 :

∆{2,3,4,5}(x)∆{1,6,7,8}(x) = ImmK1
(x),

where K1 identifies with the Kauffman diagram:
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∆{1,3,4,5}(x)∆{2,6,7,8}(x) = ImmK1
(x) + ImmK2

(x),

where K1, K2 identify with Kauffman diagrams:
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Moreover, there is an inequality:
∆{1,3,4,5}(x) − ∆{2,6,7,8}(x)−∆{2,3,4,5}(x)∆{1,6,7,8}(x)
= ImmK1

(x) + ImmK2
(x)− ImmK1

(x) = ImmK2
(x) ≥ 0

A main proof idea
(Weak separability =⇒ inequalities). I = (1, 2, 3, 4), J = (5, 6, 7, 8) for
n = 4. Suppose r = 4, i.e. i4 = 4. Then
I1,r = (1, 2, 3, 5), J1,r = (4, 6, 7, 8); I2,r = (1, 2, 3, 6), J2,r = (5, 4, 7, 8);

I3,r = (1, 2, 3, 7), J3,r = (5, 6, 4, 8); I4,r = (1, 2, 3, 8), J4,r = (5, 6, 7, 4).

∆I↑(x)∆J↑(x) = ImmK0
(x), where K0 identifies with:
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∆
I↑1,r

(x)∆
J↑
1,r
(x) = ImmK0

(x) + ImmK1
(x), where K0, K1 identify with:
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∆
I↑1,r

(x)∆
J↑
1,r
(x)−∆I↑(x)∆J↑(x)

= ImmK0
(x) + ImmK1

(x)− ImmK0
(x) ≥ 0.

∆
I↑2,r

(x)∆
J↑
2,r
(x) = ImmK1

(x) + ImmK2
(x), where K1, K2 identify with:
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(
∆
I↑1,r

(x)∆
J↑
1,r
(x)−∆I↑(x)∆J↑(x)

)
−∆

I↑2,r
(x)∆

J↑
2,r
(x)

= ImmK1
(x)−

(
ImmK1

(x) + ImmK2
(x)

)
≤ 0.

∆
I↑3,r

(x)∆
J↑
3,r
(x) = ImmK2

(x) + ImmK3
(x), where K2, K3 identify with:
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(
∆
I↑1,r

(x)∆
J↑
1,r
(x)−∆I↑(x)∆J↑(x)

)
−∆

I↑2,r
(x)∆

J↑
2,r
(x) + ∆

I↑3,r
(x)∆

J↑
3,r
(x)

= −ImmK2
(x) +

(
ImmK2

(x) + ImmK3
(x)

)
≥ 0.

The last inequality is the Plücker relation itself.
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