The restriction problem and the Frobenius Transform

Mitchell Lee Harvard University

Restriction coefficients

Let $n \geq 0$ and let λ be a partition with at most n parts. There is a corresponding irreducible $GL_n(\mathbb{C})$ -module: the Schur module $\mathbb{S}^{\lambda}\mathbb{C}^n$. Because the symmetric group \mathfrak{S}_n embeds in $GL_n(\mathbb{C})$ by permutation matrices, one may ask: how does the restriction of $\mathbb{S}^{\lambda}\mathbb{C}^n$ to \mathfrak{S}_n decompose into irreducible \mathfrak{S}_n -modules?

In other words, let λ and μ be partitions and let $n=|\mu|$. What is the value of the restriction coefficient

$$r_{\lambda}^{\mu} = \dim \operatorname{Hom}_{\mathfrak{S}_n}(V_{\mu}, \mathbb{S}^{\lambda}\mathbb{C}^n),$$

where V_{μ} is the Specht module corresponding to the partition μ ?

While there are many known formulas for the restriction coefficient r^{μ}_{λ} , no combinatorial interpretation is known. The problem of finding such a combinatorial interpretation is known as the restriction problem.

Here is a sampling of recent results about the restriction coefficients $r_{\lambda}^{\mu}.$

- In 2021, Heaton, Sriwongsa, and Willenbring proved the following nonvanishing result: for all positive integers m,n>1 and all $\mu \vdash n$, there exists a two-row partition $\lambda = (\lambda_1,\lambda_2) \vdash mn$ such that $\lambda_1 \lambda_2 \leq m$ and $r_{\mu}^{\lambda} > 0$ [1].
- In 2021, Orellana and Zabrocki introduced the *irreducible* character basis $\{\tilde{s}_{\lambda}\}_{\lambda}$ of the ring of symmetric functions and used it to provide an algorithm for computing r_{λ}^{μ} [7].
- In 2024, Narayanan, Paul, Prasad, and Srivastava found a combinatorial interpretation for r^{μ}_{λ} in the case that μ has one column and λ is either a hook shape or has at most two columns [5].

Notation

We will use the following terminology and notation. Definitions can be found in any standard reference on the theory of symmetric functions.

- The ring of symmetric functions Λ and the ring of symmetric power series Λ̄.
- The monomial, elementary, homogeneous, power sum, and Schur symmetric functions, denoted $m_{\lambda}, e_{\lambda}, h_{\lambda}, p_{\lambda}, s_{\lambda}$ respectively.
- The Hall inner product $\langle \cdot, \cdot \rangle : \Lambda \times \overline{\Lambda} \to \mathbb{Z}$.
- The plethysm f[q], where $f, q \in \overline{\Lambda}$.
- The Littlewood-Richardson coefficient $c_{\lambda\mu}^{\nu}$ and Littlewood-Richardson tableaux.
- The Kronecker product $*: \overline{\Lambda} \times \overline{\Lambda} \to \overline{\Lambda}$.

Vanishing of restriction coefficients

When do we have $r_{\mu}^{\lambda}=0$? This question is partially answered by the following theorems.

For partitions λ, μ , let $\lambda \cap \mu$ denote the partition whose Young diagram is the intersection of the Young diagrams of μ and λ . Explicitly, $\ell(\lambda \cap \mu) = \min(\ell(\lambda), \ell(\mu))$ and $(\lambda \cap \mu)_i = \min(\lambda_i, \mu_i)$ for all i.

Theorem ([3, Theorem 1.2])

Let λ, μ be partitions. If the restriction coefficient r_{μ}^{λ} does not vanish, then $|\lambda \cap \hat{\mu}| \geq 2|\hat{\mu}| - |\lambda|$, where $\hat{\mu} = (\mu_2, \dots, \mu_{\ell(\mu)})$ is the partition formed by removing the first part of μ .

For a partition μ , let $D(\mu)$ denote the size of the Durfee square of μ . That is, $D(\mu)$ is the largest integer d such that $\mu_d \geq d$.

Theorem ([3, Theorem 1.5])

Let μ be a partition and let $k \geq 1$ be an integer. The following are equivalent:

1. There exists a partition λ such that $\lambda_1 \leq k$ and $r^{\mu}_{\lambda} > 0$. 2. $D(\mu) \leq 2^{k-1}$.

In particular, if λ and μ are partitions with $D(\mu)>2^{\lambda_1-1},$ then $r_{\lambda}^{\mu}=0.$

A special case: At most three columns

We also solve the restriction problem in the case that the partition λ has at most three columns. It would be interesting to see if this answer can be simplified.

Theorem ([4, Corollary 4.1])

Let λ, μ be partitions with $\lambda_1 \leq 3$. Then, r_{λ}^{μ} is the number of tuples $(r, \nu, \lambda^{(1)}, \lambda^{(2)}, \lambda^{(3)}, T^{(1)}, T^{(2)})$, where

- r > 0 is an integer;
- ν , $\lambda^{(1)}$, $\lambda^{(2)}$, $\lambda^{(3)}$ are partitions;
- $(-\nu_1 + \nu_2 + \nu_3 r)/2$ is a nonnegative integer;
- $T^{(1)}$ is a Littlewood–Richardson tableau of shape λ/ν^T and content $\lambda^{(1)}$;
- $T^{(2)}$ is a Littlewood–Richardson tableau of shape $\lambda^{(2)}/\lambda^{(1)}$ and content $((\nu_1+\nu_2-\nu_3-r)/2, (\nu_1-\nu_2+\nu_3-r)/2, (-\nu_1+\nu_2+\nu_3-r)/2);$
- $\lambda^{(3)}/\lambda^{(2)}$ is a vertical strip with r boxes;
- $\mu/\lambda^{(3)}$ is a horizontal strip.

The Frobenius transform

Our results are proved by introducing a linear map $\mathscr{F} \colon \Lambda \to \overline{\Lambda}$ called the *Frobenius transform*. It can be defined in at least six different ways.

1. The matrix entries of $\mathcal F$ in the Schur basis are the restriction coefficients. That is,

$$\mathscr{F}{s_{\lambda}} = \sum_{\mu} r_{\lambda}^{\mu} s_{\mu}.$$

2. \mathscr{F} is the adjoint to plethysm by $H=1+h_1+h_2+\cdots$ under the Hall inner product. That is,

$$\langle \mathscr{F}\{f\}, g\rangle = \langle f, g[H]\rangle$$

for all $f, g \in \Lambda$.

 $3. \mathcal{F}$ is given by the formula

$$\mathscr{F}{f} = \sum_{\mu} f(\Xi_{\mu}) \frac{p_{\mu}}{z_{\mu}},$$

where the sum is over all partitions μ , and Ξ_{μ} denotes the sequence

1,
$$\exp\left(\frac{2\pi i}{\mu_1}\right)$$
, $\exp\left(\frac{4\pi i}{\mu_1}\right)$, ..., $\exp\left(\frac{2(\mu_1-1)\pi i}{\mu_1}\right)$,

$$1, \exp\left(\frac{2\pi i}{\mu_{\ell}}\right), \exp\left(\frac{4\pi i}{\mu_{\ell}}\right), \dots, \exp\left(\frac{2(\mu_{\ell}-1)\pi i}{\mu_{\ell}}\right)$$

- 4. \mathscr{F} is the unique linear map satisfying $\mathscr{F}\{e_r\} = e_r \cdot H$ for all r, as well as $\mathscr{F}\{fq\} = \mathscr{F}\{f\} * \mathscr{F}\{q\}$ for all $f, q \in \Lambda$.
- 5. Using the Hall inner product, linear maps Λ → Λ̄ correspond to elements of Λ̄⊗Λ̄. The element of Λ̄⊗Λ̄ corresponding to ℱ is the Frobenius characteristic of the category of finite sets and bijections, considered as a bimodule over the category of finite sets and functions.
- F is the decategorification of Joyal's analytic functor construction [2].

The surjective Frobenius transform

Let $f \in \Lambda$. Even though $\mathscr{F}\{f\} \in \overline{\Lambda}$ can have infinitely many nonzero coefficients, it only carries a finite amount of information. Recall that $H = 1 + h_1 + h_2 + \cdots$.

Proposition ([3, Proposition 3.15])

Let $f \in \Lambda$. There exists a symmetric function $\mathscr{F}_{Sur}\{f\} \in \Lambda$ such that $\mathscr{F}\{f\} = \mathscr{F}_{Sur}\{f\} \cdot H$. Moreover, $\mathscr{F}_{Sur}\{f\}$ has the same degree and leading term as f.

Computing the Frobenius transform

There is no known combinatorial (subtraction-free) formula that writes $\mathscr{F}\{s_{\lambda}\}$ as a linear combination of Schur functions. Such a formula would solve the restriction problem. However, there are combinatorial formulas for $\mathscr{F}\{h_{\lambda}\}$, $\mathscr{F}\{e_{\lambda}\}$, and $\mathscr{F}\{p_{\lambda}\}$ [6, Equation (6)] [3, Theorem 1.4]. Here is the formula for $\mathscr{F}\{h_{\lambda}\}$.

Theorem ([6, Equation (6)], [3, Theorem 1.4(a)])

Let λ be a partition and let $\ell = \ell(\lambda)$ be its length. Then,

$$\mathscr{F}\{h_{\lambda}\} = \sum_{M} \prod_{j \in \mathbb{N}^{\ell}} h_{M(j)},$$

where the sum is over all functions $M: \mathbb{N}^{\ell} \to \mathbb{N}$ such that $\sum_{i \in \mathbb{N}^{\ell}} j_i M(j) = \lambda_i$ for $i = 1, \dots, \ell$.

For example

$$\mathscr{F}\{h_{2,2}\} = (h_1 + h_2 + 3h_{1,1} + 2h_{2,1} + h_{1,1,1} + h_{2,2}) \cdot H.$$

Reference

- Alexander Heaton, Songpon Sriwongsa, and Jeb F. Willenbring. Branching from the general linear group to the symmetric group and the principal embedding. *Algebr. Comb.*, 4(2):189–200, 2021.
- [2] André Joyal. Foncteurs analytiques et espèces de structures. In Combinatoire énumérative (Montreal, Que., 1985/Quebec, Que., 1985), volume 1234 of Lecture Notes in Math., pages 126–159. Springer, Berlin, 1986.
- [3] Mitchell Lee. The Frobenius transform of a symmetric function. Algebr. Comb., 7(4):931–958, 2024.
- [4] Mitchell Lee. Restriction coefficients for partitions with at most three columns. 2025.
- [5] Sridhar Narayanan, Digjoy Paul, Amritanshu Prasad, and Shraddha Srivastava. Some restriction coefficients for the trivial and sign representations. *Algebr. Comb.*, 7(4):1183– 1195, 2024.
- [6] Rosa Orellana and Mike Zabrocki. A combinatorial model for the decomposition of multivariate polynomial rings as S_n-modules. *Electron. J. Combin.*, 27(3):Paper No. 3.24, 18, 2020.
- [7] Rosa Orellana and Mike Zabrocki. Symmetric group characters as symmetric functions. Adv. Math., 390:Paper No. 107943, 34, 2021.