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Restriction coefficients

Let n ≥ 0 and let λ be a partition with at most n parts.
There is a corresponding irreducible GLn(C)-module: the
Schur module SλCn. Because the symmetric group Sn em-
beds in GLn(C) by permutation matrices, one may ask: how
does the restriction of SλCn to Sn decompose into irreducible
Sn-modules?

In other words, let λ and µ be partitions and let n = |µ|.
What is the value of the restriction coefficient

rµλ = dimHomSn
(Vµ,SλCn),

where Vµ is the Specht module corresponding to the parti-
tion µ?

While there are many known formulas for the restriction coeffi-
cient rµλ, no combinatorial interpretation is known. The prob-
lem of finding such a combinatorial interpretation is known as
the restriction problem.

Here is a sampling of recent results about the restriction coef-
ficients rµλ.
• In 2021, Heaton, Sriwongsa, and Willenbring proved the fol-
lowing nonvanishing result: for all positive integersm,n > 1
and all µ ⊢ n, there exists a two-row partition λ = (λ1, λ2) ⊢
mn such that λ1 − λ2 ≤ m and rµλ > 0 [1].

• In 2021, Orellana and Zabrocki introduced the irreducible
character basis {s̃λ}λ of the ring of symmetric functions
and used it to provide an algorithm for computing rµλ [7].

• In 2024, Narayanan, Paul, Prasad, and Srivastava found a
combinatorial interpretation for rµλ in the case that µ has
one column and λ is either a hook shape or has at most two
columns [5].

Notation

We will use the following terminology and notation. Defini-
tions can be found in any standard reference on the theory of
symmetric functions.
•The ring of symmetric functions Λ and the ring of sym-
metric power series Λ.

•The monomial, elementary, homogeneous, power sum,
and Schur symmetric functions, denoted mλ, eλ, hλ, pλ, sλ
respectively.

•The Hall inner product ⟨·, ·⟩ : Λ× Λ → Z.
•The plethysm f [g], where f, g ∈ Λ.
•The Littlewood–Richardson coefficient cνλµ and
Littlewood–Richardson tableaux.

•The Kronecker product ∗ : Λ× Λ → Λ.

Vanishing of restriction coefficients

When do we have rµλ = 0? This question is partially answered
by the following theorems.

For partitions λ, µ, let λ∩µ denote the partition whose Young
diagram is the intersection of the Young diagrams of µ and
λ. Explicitly, ℓ(λ ∩ µ) = min(ℓ(λ), ℓ(µ)) and (λ ∩ µ)i =
min(λi, µi) for all i.

Theorem ([3, Theorem 1.2])

Let λ, µ be partitions. If the restriction coefficient rµλ
does not vanish, then |λ ∩ µ̂| ≥ 2|µ̂| − |λ|, where µ̂ =
(µ2, . . . , µℓ(µ)) is the partition formed by removing the first
part of µ.

For a partition µ, letD(µ) denote the size of the Durfee square
of µ. That is, D(µ) is the largest integer d such that µd ≥ d.

Theorem ([3, Theorem 1.5])

Let µ be a partition and let k ≥ 1 be an integer. The
following are equivalent:
1. There exists a partition λ such that λ1 ≤ k and rµλ > 0.
2.D(µ) ≤ 2k−1.

In particular, if λ and µ are partitions with D(µ) > 2λ1−1,
then rµλ = 0.

A special case: At most three columns

We also solve the restriction problem in the case that the
partition λ has at most three columns. It would be interesting
to see if this answer can be simplified.

Theorem ([4, Corollary 4.1])

Let λ, µ be partitions with λ1 ≤ 3. Then, rµλ is the number
of tuples (r, ν, λ(1), λ(2), λ(3), T (1), T (2)), where
• r ≥ 0 is an integer;
• ν, λ(1), λ(2), λ(3) are partitions;
• (−ν1 + ν2 + ν3 − r)/2 is a nonnegative integer;
•T (1) is a Littlewood–Richardson tableau of shape λ/νT

and content λ(1);
•T (2) is a Littlewood–Richardson tableau of shape λ(2)/λ(1)

and content ((ν1+ν2−ν3−r)/2, (ν1−ν2+ν3−r)/2, (−ν1+
ν2 + ν3 − r)/2);

•λ(3)/λ(2) is a vertical strip with r boxes;
•µ/λ(3) is a horizontal strip.

The Frobenius transform

Our results are proved by introducing a linear map F : Λ → Λ
called the Frobenius transform. It can be defined in at least
six different ways.
1. The matrix entries of F in the Schur basis are the restriction
coefficients. That is,

F{sλ} =
∑

µ

rµλsµ.

2.F is the adjoint to plethysm by H = 1 + h1 + h2 + · · ·
under the Hall inner product. That is,

⟨F{f}, g⟩ = ⟨f, g[H ]⟩
for all f, g ∈ Λ.

3.F is given by the formula

F{f} =
∑

µ

f (Ξµ)
pµ
zµ
,

where the sum is over all partitions µ, and Ξµ denotes the
sequence

1, exp

(
2πi

µ1

)
, exp

(
4πi

µ1

)
, . . . , exp

(
2(µ1 − 1)πi

µ1

)
,

...

1, exp

(
2πi

µℓ

)
, exp

(
4πi

µℓ

)
, . . . , exp

(
2(µℓ − 1)πi

µℓ

)
.

4.F is the unique linear map satisfying F{er} = er · H for
all r, as well as F{fg} = F{f} ∗ F{g} for all f, g ∈ Λ.

5. Using the Hall inner product, linear maps Λ → Λ corre-
spond to elements of Λ⊗ Λ. The element of Λ⊗ Λ corre-
sponding to F is the Frobenius characteristic of the category
of finite sets and bijections, considered as a bimodule over
the category of finite sets and functions.

6.F is the decategorification of Joyal’s analytic functor con-
struction [2].

The surjective Frobenius transform

Let f ∈ Λ. Even though F{f} ∈ Λ can have infinitely
many nonzero coefficients, it only carries a finite amount of
information. Recall that H = 1 + h1 + h2 + · · · .

Proposition ([3, Proposition 3.15])

Let f ∈ Λ. There exists a symmetric function FSur {f} ∈ Λ
such that F{f} = FSur {f} · H . Moreover, FSur {f} has
the same degree and leading term as f .

Computing the Frobenius transform

There is no known combinatorial (subtraction-free) formula
that writes F{sλ} as a linear combination of Schur functions.
Such a formula would solve the restriction problem. How-
ever, there are combinatorial formulas for F{hλ}, F{eλ}, and
F{pλ} [6, Equation (6)] [3, Theorem 1.4]. Here is the formula
for F{hλ}.

Theorem ([6, Equation (6)], [3, Theorem 1.4(a)])

Let λ be a partition and let ℓ = ℓ(λ) be its length. Then,

F{hλ} =
∑

M

∏

j∈Nℓ

hM(j),

where the sum is over all functions M : Nℓ → N such that∑
j∈Nℓ jiM(j) = λi for i = 1, . . . , ℓ.

For example,

F{h2,2} = (h1 + h2 + 3h1,1 + 2h2,1 + h1,1,1 + h2,2) ·H.
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