

Identifying Orbit Lengths for Promotion

Elise Catania ¹ Jack Kendrick ² Heather M Russell ³ Julianna S Tymoczko ⁴

¹University of Minnesota ²University of Washington ³University of Richmond ⁴Smith College

Promotion of Standard Young Tableaux

Promotion is a function from SYT of fixed shape λ to SYT of the same shape. Given T, we construct P(T) as follows:

- 1. Erase 1 in the top left corner of T and leave an empty box
- 2. Given the configuration b and b < a then slide b left; else if a < b slide a up.
- 3. Repeat the above process until there are no nonempty boxes below or to the right of the empty box.
- 4. Decrement all entries by 1 and insert the largest entry of T into the empty box.

Figure 1. The tableau T and its promotion P(T)

Definition. Suppose $S \subseteq T$ is a subtableau. We call S uniformly proper if:

- 1. S and T have the same number of rows:
- 2. S has entries $\{k, k+1, \ldots, k+\ell\}$ for some k and ℓ .

S a uniformly proper rectangular subtableau if in addition all of its rows have the same length. If T contains no uniformly proper subtableau, T is minimal. Given a uniformly proper rectangular subtableau S of T, we may write T as the horizontal concatenation $T = T_1ST_2$.

Figure 2. Decomposition of tableau T with uniformly proper subtableau S

Lemma. Suppose T has a uniformly proper rectangular subtableau S with content $\{k+1,\ldots,k+1\}$ ℓ for some $k, \ell > 0$. Then, P(T) contains the uniformly proper subtableau S' with content $\{k, k+1, \ldots, k+\ell-1\}$ formed by subtracting 1 from each entry of S.

m-Diagrams

An m-diagrams is a collection of arcs that satisfy certain noncrossing conditions. There is a simple bijection between SYT and m-diagrams [2, 3].

Figure 3. Tableau T and its corresponding m-diagram $\varphi(T)$

Definition. A component is a minimal collection of noncrossing arcs that contains every arc starting and ending at each of its endpoints.

Figure 4. The components of the m-diagram $\varphi(T)$.

Key Observations

- 1. Minimal uniformly proper rectangular subtableaux of T correspond to components of $\varphi(T)$ and so induce a partition of the boundary.
- Uniformly proper subtableaux are preserved during promotion.
- 3. The components of $\varphi(P(T))$ are almost the components of the left-rotation $\rho(\varphi(T))$, see

Figure 5. The rotation $\rho(\varphi(T))$ compared to the m-diagram $\varphi(P(T))$.

Idea: Use rotational symmetry of $\varphi(T)$ to determine the orbit length $|\mathcal{O}(T)|$.

Algorithm for Computing Orbit Lengths of SYT

For each component C of $\varphi(T)$, construct the corresponding tableau T_C . With a slight abuse of language and notation, we define the component promotion $P(T_C)$ of T_C as follows:

- 1. If $1 \notin \partial C$, form $P(T_C)$ by decrementing each entry of T_C by 1.
- 2. If $1 \in \partial C$, form $P(T_C)$ by
- 1. removing 1 from the top left corner of T_C ,
- 2. performing the sequence of sliding moves for promotion,
- decrementing each entry of T_C by 1.
- 4. filling the empty box with |T|.

Theorem 1. The orbit length $|\mathcal{O}(T)|$ can be determined as follows:

- 1. Let N be the smallest positive integer such that $\{\rho^N(\partial C_1), \dots, \rho^N(C_k)\} = \{\partial C_1, \dots, \partial C_k\}$.
- 2 Define Las

$$\ell = \min\{k \geq 1 : \rho^{kN}(\partial C_i) = \partial C_j \implies P^{kN}(T_{C_i}) = T_{C_j} \forall i\}$$

where T_{C_i} is the tableau corresponding to C_i .

Then, the equality $|\mathcal{O}(T)| = \ell N$ holds

Example

The following equalities hold:

$$\rho^{12}(\partial C_1) = \partial C_3 \quad \rho^{12}(\partial C_2) = \partial C_4 \quad \rho^{12}(\partial C_3) = \partial C_1 \quad \rho^{12}(\partial C_4) = \partial C_2.$$

So, N=12. As the orbit length $|\mathcal{O}(T)|$ must divide 24, either $|\mathcal{O}(T)|=12$ or $|\mathcal{O}(T)|=24$ and so $\ell=1$ or $\ell=2$. We calculate the 12-fold promotions of each tableau T_C .

We see that the equalities hold:

$$P^{12}(\partial C_1) = \partial C_3$$
 $P^{12}(\partial C_2) = \partial C_4$ $P^{12}(\partial C_3) = \partial C_1$ $P^{12}(\partial C_4) = \partial C_2$.

It follows that $\ell = 1$ and the orbit length is $|\mathcal{O}(T)| = 12$.

(Column) Semi-Standard Tableaux

A (column) semistandard Young tableau (SSYT) is a filling of the Young diagram for λ with the numbers $1, 2, \dots, n$ so that each number appears at least once rows strictly increase left-to-right, and columns weakly increase top-to-bottom. If each number i appears e_i times in T then we denote the content $\{1^{e_1}, 2^{e_2}, \dots, n^{e_n}\}.$

Suppose T has content $\{1^{e_1},\ldots,n^{e_n}\}$. The map ψ constructs an SYT from T :

- 1. Relabel each 1 in T sequentially from top to bottom using the set $\{1, 2, \dots, e_1\}$.
- 2. For each i > 1, relabel each entry i sequentially from top to bottom using the set $\{(e_1 + \ldots + e_{i-1}) + 1, (e_1 + \ldots + e_{i-1}) + 2, \ldots, (e_1 + \ldots + e_{i-1}) + e_i\}.$

Figure 6. The column SSYT T and its corresponding SYT $\psi(T)$

The promotion P(T) of an SSYT T is formed as follows:

- 1. Frase 1 from the top left corner and perform sliding moves until there are no nonempty boxes below or to the right.
- 2. Repeat step 1 a total of e_1 times and fill each empty box with n.

Algorithm for Computing Orbit Lengths of SSYT

Given a multiset $\{1^{e_1},\ldots,r^{e_r}\}$, let R be the smallest integer such that $e_{i+R \mod(r)}=e_i$ for all 1 < i < r. We now provide a formula to compute $|\mathcal{O}(T)|$ using $|\mathcal{O}(\psi(T))|$ and R.

Theorem 2. The orbit length $|\mathcal{O}(T)| = qR$ where q is chosen such that the equality holds:

$$q\sum_{i=1}^R e_i = \operatorname{lcm}\left(\sum_{i=1}^R e_i, |\mathcal{O}(\psi(T))|\right)$$

Since $\psi(T)$ is an SYT, its orbit length $|\mathcal{O}(\psi(T))|$ can be calculated using Theorem 1.

Example

We now calculate the orbit length $|\mathcal{O}(T)|$ for the tableau T in Figure 6. The content of T is $\{1, 2, 3^4, 4, 5, 6^4, 7, 8, 9^4, 10, 11, 12^4\}$. For each i, we have $e_{i+4 \mod 12} = e_i$. Thus, R = 4.

The orbit length $|\mathcal{O}(\psi(T))|$ can be calculated using the m-diagram $\varphi(\psi(T))$

In the language of Theorem 1. N=6. By considering each of the five components of $\varphi(\psi(T))$. we calculate that $\ell = 1$ and so $|\mathcal{O}(\psi(T))| = 6$.

Note that $\sum_{i=1}^{R} e_i = 6$. Choosing q to satisfy the equality

$$q\sum_{i=1}^R e_i = \ell \cdot 6 = \operatorname{lcm}(6, |\mathcal{O}(\psi(T))|) = \operatorname{lcm}(6, 6),$$

we see that q=1 suffices. Thus the orbit length $|\mathcal{O}(T)|=1\cdot 3=3$.

References

- [1] Elise Catania, Jack Kendrick, Heather M. Russell, and Julianna Tymoczko. Identifying orbit lengths for promotion, 2025. URL https: //arxiv.org/abs/2506.22306
- [2] Heather M Russell. An explicit bijection between semistandard tableaux and non-elliptic sl 3 webs. Journal of Algebraic Combinatorics,
- [3] Julianna Tymoczko. A simple bijection between standard 3 x n tableaux and irreducible webs for \$1, Journal of Algebraic Combinatorics,