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Motivation

The irreducible representations of the symmetric group Sn are the Specht modules Sλ

indexed by integer partitions λ � n. For the case of 3-row rectangles, Kuperberg [7]
famously introduced a diagrammatic “web” basis of the Specht module S3×b (and more
generally for other spaces of invariant tensors). We have recently extended this result
to 4-row rectagles [4].

Web bases has many important applications to quantum link invariants, cluster algebras,
and algebraic geometry. From a combinatorial perspective, a key property of the web
basis are that the long cycle c = (12 . . . n) acts diagrammatically as a rotation [8].

Based on work by Fraser [2], our new main result [6] is a rotation-invariant web basis
for the 2-column rectangular Specht module Sr×2 (and also for more general spaces of
tensor invariants).

SLr-Webs

An SLr-web is a bipartite planar graph embedded in a disc with black boundary vertices,
with multi-edges allowed between internal vertices, and whose internal vertices are all
r-valent [3].

An SLr-web is contracted if it contains no vertices of simple degree two.

To each SLr-web W with n boundary vertices, associate a polynomial �W � in
Inv((Cr)⊗n) = HomSLr(C)((Cr)⊗n,C) ⊂ C[xi1, xi2, . . . , xir : 1 ≤ i ≤ n]

which is invariant under the action of SLr. Recall that as an Sn-module:

Inv((Cr)⊗n) ∼= S(r×(n/r)).

The set of invariants associated to all SLr-webs is spanning the invariant space [1]. A gen-
eral problem is to pick out a ”nice” set ofwebs giving a basis. Note that dim Inv((Cr)⊗n) =
|SYT(r × (n/r))|.
We call n/r the Plücker degree of the web.

Fraser’s Construction

Fraser [2] gives a map from 2-column rectangular standard Young tableaux with r rows
to certain SLr-webs of Plücker degree two.
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SLr-web

In the construction of the weighted triangulation there are choices involving the ”zero”-
diagonals. The resulting webs differ by square moves and for a fixed tableau all possible
webs have the same invariant.
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Schützenberger Promotion and Promotion Permutations

Schützenberger promotion is defined in terms of jdt-slides.
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Promotion permutations keep track of the entries in E sliding from row i + 1 to row i
when applying Schützenberger promotion [5].

prom1(T ) = 2 6 4 5 9 7 8 12 10 11 14 13 3 1 = prom−1
6 (T ),

prom2(T ) = 4 7 5 9 12 8 10 14 11 13 3 1 6 2 = prom−1
5 (T ), and

prom3(T ) = 5 9 8 12 14 10 11 1 13 3 6 2 7 4 = prom−1
4 (T ).

Hourglass Plabic Graphs

An hourglass plabic graph is an avatar for an SLr-web, where each edge of multiplicity
m is replaced with m strands twisted like an hourglass .
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A key feature of hourglass plabic graphs is that they have r − 1 trip permutations
trip1(G), trip2(G), . . . tripr−1(G) defined using the rules of the road. For tripi(G):

1. Start at boundary vertex bs,
2. Follow the edges in G and turn at each internal vertex,
3. Take the i-th left at white vertices and i-th right at black vertices.
4. The process ends at boundary vertex bt. Then set tripi(G)(s) = t.

Two hourglass plabic graphs G and G� are equivalent, G ∼ G�, if they have the same
tuple of trip permutations.

An hourglass plabic graph G is fully reduced if its trips avoid certain double crossings.

Main Theorems

Theorems: Fraser’s construction F bijectively maps the set of 2 × r standard Young
tableau to the set of equivalence classes of contracted fully reduced SLr hourglass
plabic graphs of Plücker degree two.

Furthermore, this bijection satisfies trip•(F(T )) = prom•(T ) and consequently inter-
twines promotion of tableaux with rotation of hourglass plabic graphs.

Theorem: The invariant polynomials �G� of fully reduced SLr hourglass plabic graphs
with 2r boundary vertices are a rotation-invariant web basis for the invariant space
Inv((Cr)⊗2r).

This extends our previous results for fully reduced SL3- and SL4-webs. Our earlier
results hold for arbitrary Plücker degree (number of columns) but fixed rank (number of
rows). The new results hold for an arbitrary rank but fixed Plücker degree.
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