Domino Tilings and Macdonald Polynomials

lan Cavey 1 Yi-Lin Lee 2

¹Department of Mathematics, University of Illinois Urbana-Champaign (cavey@illinois.edu) ²Department of Mathematics, Indiana University Bloomington (yillee@iu.edu)

Introduction

The study of Macdonald polynomials has produced many interesting combinatorial objects, often expressed as weighted sums over sets of lattice paths. Perhaps the most famous and well-studied such objects are the q, t-Catalan numbers introduced by Garsia and Haiman [4], which can be defined combinatorially as the sum over Dyck paths weighted by the area and dinv statistics. Among the many generalizations of the q, t-Catalan numbers are the extension to Schröder paths defined by Egge, Haglund, Killpatrick, and Kremer [2], and to nested families of Dyck paths due to Loehr and Warrington [6]. All of these objects have natural interpretations in terms of Macdonald polynomials often expressed via the nabla operator ∇ on symmetric functions introduced by Bergeron and Garsia [1]. In this work, we study the common generalization to nested families of Schröder paths and their connection to domino tilings.

The Nabla Operator ∇

Let R be a commutative ring.

• A function (formal power series) $f \in \mathcal{R}[x_1, x_2, ...]$ is symmetric if

$$f(x_{\sigma(1)}, x_{\sigma(2)}, \dots) = f(x_1, x_2, \dots),$$

for all permutations σ on the positive integers.

- Let $\Lambda_{\mathcal{R}}$ be the collection of symmetric functions and $\Lambda_{\mathcal{R}}^n = \{ f \in \Lambda_{\mathcal{R}} | \deg(f) = n \}.$
- Two symmetric functions:

$$\begin{array}{ll} h_n(x_1,x_2,\dots) = \sum_{1 \leq i_1 \leq \dots \leq i_n} x_{i_1} \dots x_{i_n}, & h_0 := 1. \text{ (complete homogeneous)} \\ e_n(x_1,x_2,\dots) = \sum_{1 \leq i_1 < \dots < i_n} x_{i_1} \dots x_{i_n}, & e_0 := 1. \text{ (elementary)} \end{array}$$

- Schur functions $\{s_{\lambda}\}_{\lambda \vdash n}$ form an orthonormal basis of $\Lambda^n_{\mathcal{R}}$, i.e. $\langle s_{\lambda}, s_{\mu} \rangle = \delta_{\lambda, \mu}$.
- Modified Macdonald polynomials $\tilde{H}_{\lambda}(\mathbf{x};q,t)$ are symmetric in $\{x_i\}_{i\geq 1}$ with coefficients in $\mathbb{Z}_{\geq 0}[q,t].$ $\{\tilde{H}_{\lambda}\}_{\lambda \vdash n}$ forms a basis of $\Lambda^n_{\mathcal{D}}.$
- lacksquare Take $\mathcal{R}=\mathbb{Q}(q,t).$ The nabla operator is a $\mathbb{Q}(q,t)$ -linear map ∇ on $\Lambda_{\mathbb{Q}(q,t)}$ such that

$$\nabla(\tilde{H}_{\mu}) = q^{n(\mu')}t^{n(\mu)}\tilde{H}_{\mu}$$
, for all partitions μ ,

where μ' is the conjugate of μ and $n(\mu) = \sum_{i} (i-1)\mu_i$.

Central Question: what results are obtained when applying ∇ to elements of some basis of $\Lambda_{\mathbb{O}(a,t)}$ and expanding the result in terms of another basis?

For example: In the Schur expansion $\nabla(s_{\lambda}) = \sum_{\mu} a_{\lambda,\mu} s_{\mu}$, what does $a_{\lambda,\mu}$ count? Note that the coefficient $a_{\lambda,\mu} = \langle \nabla(s_{\lambda}), s_{\mu} \rangle$.

p: Schröder paths with d diagonal steps

■ [Loehr-Warrington, Blasiak-Haiman-Morse-Pun-Seelinger/Kim-Oh] $\langle \nabla(s_\lambda), s_{(1^n)} \rangle = \operatorname{sgn}(\lambda)$

Definitions

Let $\lambda \vdash n$ be a partition. A border strip decomposition of λ is defined as follows [Loehr-Warrington]:

- (1) decompose the Young diagram of λ by removing successive border strips from the southeastern side.
- (2) let n_i denote the number of squares in the border strip ending at the jth box from the right (indexed from j = 0) in the top row.

 $(n_0, n_1, n_2, n_3) = (6, 0, 3, 1).$

A λ -families of Schröder paths is a (k+1)-tuple $\pi = (\pi_0, \dots, \pi_k)$ where $k = \lambda_1 - 1$, such that

- (1) π_i is a lattice path consisting of (0,1), (1,0), and (1,1) steps starting at (i,i) and ending at $(i + n_i, i + n_i)$, which lies weakly above y = x,
- (2) two distinct paths π_i and π_i do not intersect.

Let $S_{\lambda,d}$ be the set of λ -families of Schröder paths with d diagonal steps and $S_{\lambda} = \bigcup_{d>0} S_{\lambda,d}$.

A family of Schröder paths π in $\mathcal{S}_{4,3,3}$. Let $\pi = (\pi_0, \dots, \pi_k) \in \mathcal{S}_{\lambda}$. Define

- $area(\pi_i)$ = the number of shaded triangles in the region bounded by π_i and y=x.
- $\begin{tabular}{l} \blacksquare \begin{tabular}{l} \verb"adj(λ) = $\sum_{i:n,i>0}(\lambda_1-1-j)$. $\mathsf{sgn}($\lambda$) = $(-1)^{\mathsf{adj}($\lambda$)}$. $\mathsf{dinv}(\pi) = \mathsf{adj}(λ) + |\{\mathsf{dinv}\ \mathsf{pairs}\ \mathsf{in}\ \pi\}|. \end{tabular}$

 $\text{For any partition } \lambda \vdash n \text{ and } 0 \leq d \leq n, \quad \operatorname{sgn}(\lambda) \langle \nabla(s_{\lambda}), h_d \, e_{n-d} \rangle = \\ \sum_{i} \ q^{\operatorname{area}(\pi)} t^{\operatorname{dinv}(\pi)}.$

Domino tilings of R_{λ}

The region R_{λ} is obtained by removing from the region the white bottom boxes labeled i and the black bottom boxes labeled $i+n_i$ for each $i=0,\ldots,k$. A domino tiling of R_λ is a collection of dominoes that cover R_{λ} without gaps or overlaps. Let $\mathcal{T}(R_{\lambda})$ the set of domino tilings of R_{λ} .

A domino tiling of $R_{(4|3|3)}$.

The corresponding paths under the bijection

Domino tilings of R_{λ} are in bijection [7] with λ -families of Schröder paths S_{λ} .

The decoration of four types of dominoes.

Define the generating polynomial of domino tilings of R_{λ} :

$$P_{\lambda}(z;q,t) := \sum_{T \in \mathcal{T}(R_{\lambda})} z^{\operatorname{diags}(T)} q^{\operatorname{area}(T)} t^{\operatorname{dinv}(T)},$$

where $\operatorname{diags}(T) = |(1,1)|$ steps of $\pi|$, $\operatorname{area}(T) = \operatorname{area}(\pi)$, and $\operatorname{dinv}(T) = \operatorname{dinv}(\pi)$ under the bijection.

Corollary (the q, t-symmetry of $P_{\lambda}(z; q, t)$)

For all partitions λ , we have $P_{\lambda}(z;q,t) = P_{\lambda}(z;t,q)$.

Note: Our proof of Corollary is algebraic based on Theorem 1, finding a bijective proof is open!

Square Shapes $\lambda = (n^n)$

Decomposing $\lambda=(n^n)$ into border strips gives $(n_0,n_1,\ldots,n_k)=(2k+1,2k-1,\ldots,3,1)$, where k = n - 1. After placing forced vertical dominoes, the remaining region reduces to AD_n , the Aztec diamond of order n.

The border strip decomposition of (44).

The region $R_{(4.4)}$.

The middle region is AD₄

Example: $\lambda = (2, 2)$. There are 8 domino tilings of AD₂.

Total weight $P_{(2,2)}(z;q,t) = q^2t^2(z+1)(z+q)(z+t)$.

Theorem 2 (A q, t-generalization of the Aztec diamond theorem)

When $\lambda = (n^n)$ is a partition of square shape, then

$$P_{(n^n)}(z;q,t) = (qt)^{n^2(n-1)/2} \prod_{i,j \geq 0 \text{ and } i+j < n} (z+q^it^j).$$

Discussion:

- When z = q = t = 1, this recovers the fact that the number of domino tilings of AD_n is
- Our diags(T) is the same as v(T) in [3] up to a change of variables.
- Our area(T) is similar to rank(T) in [3], but they are different.
- Our dinv(T) appears to be a new statistic.

Proof ingredients for Theorem 1.

- Loehr-Warrington formula.
- Shuffle theorem [5, Chapter 6].

Proof ingredients for Theorem 2.

- Connection between domino tilings of AD_n and alternating sign matrices (ASMs).
- Interpret area and dinv as new statistics on ASMs.
- Domino shuffling [3].

Key References

- [1] François Bergeron and Adriano M. Garsia. Science fiction and Macdonald's nolynomials, pages 1–52, 1999.
- [2] E. S. Egge, J. Haglund, K. Killpatrick, and D. Kremer. A Schröder generalization of Haglund's statistic on Catalan paths. Electron. J. Comb., 10:Research Paper 16, 21, 2003.
- [3] Noam Elkies, Greg Kuperberg, Michael Larsen, and James Propp. Alternating-sign matrices and domino tilings. J. J. Algebraic Combin.
- [4] A.M. Garsia and M. Haiman, A remarkable q. t-Catalan sequence and q-Lagrange inversion, Algebr. Comb., 5:191–244, 1996.
- [5] James Haglund. The q,t-Catalan Numbers and the Space of Diagonal Hamnonics: With an Appendix on the Combinatorics of Macdonald Polynomials, volume 41 of University Lecture Series, American Mathematical Society, 2008
- [6] Nicholas A. Loehr and Gregory S. Warrington. Nested quantum Dyck paths and ∇s_λ. Int. Math. Res. Nat. IMRN, pages rnm 157, 29
- [7] Michael Luby, Dana Randall, and Alistair Sinclair. Markov chain algorithms for planar lattice structures. SIAM J. Comput., 31(1):167–192