Domino Tilings and Macdonald Polynomials
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Introduction

The study of Macdonald polynomials has produced many interesting combinatorial objects, often
expressed as weighted sums over sets of lattice paths. Perhaps the most famous and well-studied
such objects are the ¢, t-Catalan numbers introduced by Garsia and Haiman [4], which can be
defined combinatorially as the sum over Dyck paths weighted by the area and dinv statistics.
Among the many generalizations of the ¢, t-Catalan numbers are the extension to Schroder paths
defined by Egge, Haglund, Killpatrick, and Kremer [2], and to nested families of Dyck paths due to
Loehr and Warrington [6]. All of these objects have natural interpretations in terms of Macdonald
polynomials often expressed via the nabla operator V on symmetric functions introduced by
Bergeron and Garsia [1]. In this work, we study the common generalization to nested families of
Schroder paths and their connection to domino tilings.

The Nabla Operator V

Let R be a commutative ring.

= A function (formal power series) f € R[z1,x2,...] is symmetric if
(@) 2oy ) = fla,x2,...),
for all permutations o on the positive integers.
= Let Ag be the collection of symmetric functions and A% = {f € Ag|deg(f) =n}.
= Two symmetric functions:

hn(zy,29,...) = Z @y ... x,, hy:= 1. (complete homogeneous)
1< <<y

en(z1,29,...) = Z Ty ... xq,, €= 1. (elementary)
1<ij<-<ip

= Schur functions {sy} -, form an orthonormal basis of Alg, i.e. (sx.su) = dx -
= Modified Macdonald polynomials H(x;g,t) are symmetric in {x;};>1 with coefficients in
Z>0[q.1]. {H}arn forms a basis of A%.

= Take R = Q(q, t). The nabla operator is a Q(q, t)-linear map V on Ag(gt y such that

V(H,) =" () gl ">H,L, for all partitions 1,
where 41/ is the conjugate of yr and n(y) = Ez(i — D).

Central Question: what results are obtained when applying V to elements of some basis of
Ag(q,1) @nd expanding the result in terms of another basis?

For example: In the Schur expansion V(sy) = Eu ay 8, What does ay, , count?

Note that the coefficient ay ;, = (V(sy), sp)-

= The g, t-Catalan numbers [Garsia-Haiman, Haglund]
(V(sam)), sam)) = Cnla,t) = Z gre@dinv),
p: Dyck paths
= The g, t-Schréder numbers [Egge—Haglund-Killpatrick-Kremer, Haglund)]
(V(s(m): haen—a) = Sn,ala,t) = el dne),
p: Schroder paths with d diagonal steps
= [Loehr-Warrington, Blasiak-Haiman—-Morse-Pun-Seelinger/Kim-Oh]
(V(s3), s0m) = sgn(Y) > greamydin()
m: A-families of Dyck paths

Definitions
Let A = n be a partition. A border strip decomposition of X is defined 1306
as follows [Loehr-Warrington]: T3]
(1) decompose the Young diagram of A by removing successive + 1
border strips from the southeastern side. ++

(2) let n; denote the number of squares in the border strip ending

(ng,n1,n2,n3) = (6,0,3,1).
at the jth box from the right (indexed from j = 0) in the top row.

A M-families of Schréder paths is a (k + 1)-tuple © = (m, ..., 7) where k = A; — 1, such that

(1) m; is a lattice path consisting of (0,1), (1,0), and (1, 1) steps starting at (i,7) and ending at
(i +n;, i+ n;), which lies weakly above y = z,
(2) two distinct paths ; and m; do not intersect.

Let S 4 be the set of A-families of Schréder paths with d diagonal steps and S, = Ud>()5)w1'
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(0,0)

A family of Schroder paths  in Sy33. lllustrations of dinv pairs in 7. Dinv pairs.

Let m = (7, ..., 7)) € Sy. Define

= area(r;) = the number of shaded triangles in the region bounded by m; and y = x.
)= Z?:() area(7;).

= adi() = 30, so(h — 1= ). sgn() = (=190

area(

. dinv(r) = adj(\) + [{dinv pairs in 7}|.

Theorem 1

Forany partition A\-nand 0 < d <n, sgn(A)(V(s)),hgen_q) =

Z qarea(n)tdinv(ﬂ)A

TES\ 4

Domino tilings of R,

The region R) is obtained by removing from the region the white bottom boxes labeled ¢ and
the black bottom boxes labeled i 4 n; for each i = 0,..., k. A domino tiling of Ry is a collection
of dominoes that cover R, without gaps or overlaps Let T(R)) the set of domino tilings of Ry.
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A domino tiling of Ry 3. The corresponding paths under the bijection.

Domino tilings of R, are in bijection [7] with A-families of Schréder paths S,.

d e

The decoration of four types of dominoes.

Define the generating polynomial of domino tilings of Ry:
Z zd\ags(T)qarea(T)tdinv(T)
TeT(R))
where diags(T") = |(1, 1) steps of x|, area(T") = area(), and dinv(T") = dinv(7) under the bijection.

Py\(z:¢,t) =

Corollary (the ¢, t-symmetry of Py(z: ¢, 1))

For all partitions A, we have Py(z;q,t) = Py\(2;t,q).

Note: Our proof of Corollary is algebraic based on Theorem 1, finding a bijective proof is open!

Square Shapes \ = (n")

Decomposing A = (n™) into border strips gives (ng, ny, . . ., np)=2k+1,2k—1,..., 3,1), where
k = n — 1. After placing forced vertical dominoes, the remaining region reduces to AD,, the
Aztec diamond of order n.
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The border strip

decomposition of (4%). The region Ry 4. The middle region is AD,.

Example: A = (2,2). There are 8 domino tilings of AD».

=S
z‘{q2t2 z2q2t3 z2q2t2
Z2q3t2 zlq“tQ zlq‘it'%

Total weight Pyp)(21q.t) = ¢*t*(z + 1)(z + q) (2 + ).

Theorem 2 (A ¢, t-generalization of the Aztec diamond theorem)

When X = (n™) is a partition of square shape, then
2rn—1)/5
Pony(zi0,8) = @™ "2 ]

i,j=0and i+j<n

(= +4't).

Discussion:

= When z = ¢ = t = 1, this recovers the fact that the number of domino tilings of AD,, is
on(n+1)/2,

= Our diags(T) is the same as v(T) in [3] up to a change of variables.

= Our area(7)) is similar to rank(T') in [3], but they are different.

= Our dinv(T") appears to be a new statistic.

Proof ingredients for Theorem 1. Proof ingredients for Theorem 2.
= Loehr-Warrington formula.

= Shuffle theorem [5, Chapter 6].

= Connection between domino tilings of AD,, and
alternating sign matrices (ASMs).

* Interpret area and dinv as new statistics on ASMs.
= Domino shuffling [3].
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