

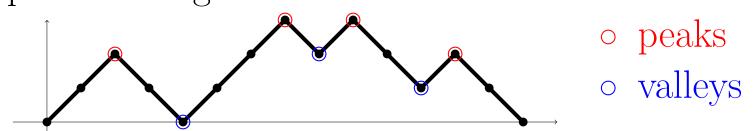
A GENERALIZED LK INVOLUTION FOR RECTANGULAR TABLEAUX

Sergi Elizalde, Dartmouth College

FPSAC 2025, Hokkaido

Peaks and valleys in Dyck paths

 $\mathcal{D}_n = \text{set of Dyck paths of length } 2n$



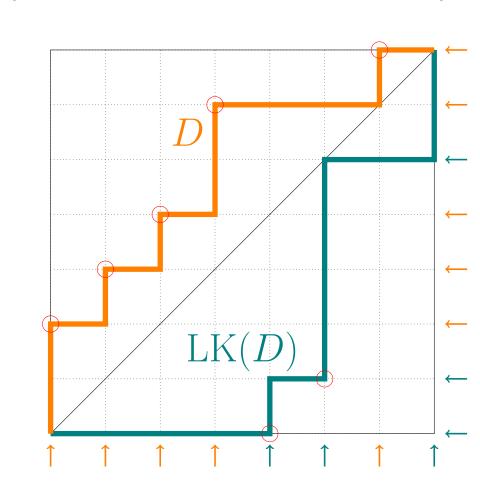
The number of $D \in \mathcal{D}_n$ with h valleys (equivalently, h+1 peaks) is the **Narayana** number

$$N(n,h) = \frac{1}{n} \binom{n}{h} \binom{n}{h+1}.$$

We have the symmetry N(n,h) = N(n,n-h-1), i.e.,

$$\#\{D \in \mathcal{D}_n \text{ with } h+1 \text{ peaks}\} = \#\{D \in \mathcal{D}_n \text{ with } n-h \text{ peaks}\}.$$

A bijective proof is given by the Lalanne–Kreweras (LK) involution.



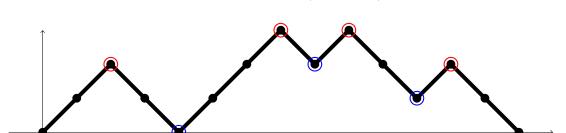
Descents and ascents in standard Young tableaux

For $\lambda \vdash N$, let $SYT(\lambda)$ be the set of standard Young tableaux of shape λ .

$$i$$
 is an ascent if $i+1$ is higher than i
 i is a descent if $i+1$ is lower than i

$$T = \begin{bmatrix} 1 & 2 & 5 & 7 \\ 3 & 6 \\ 4 & 8 \end{bmatrix}$$
 $asc(T) = 2$ $des(T) = 4$

A simple bijection $\mathcal{D}_n \to \mathrm{SYT}(n,n)$ takes peaks to descents and valleys to ascents:



Let us consider rectangular tableaux with k rows.

The generalized Narayana numbers are

$$N(k, n, h) = |\{T \in SYT(n^k) : asc(T) = h\}|$$

= $|\{T \in SYT(n^k) : des(T) = h + k - 1\}|$ (Sulanke '04)

Theorem (Sulanke '04)

$$N(k,n,h) = \sum_{\ell=0}^{h} (-1)^{h-\ell} \binom{kn+1}{h-\ell} \prod_{i=0}^{n-1} \prod_{j=0}^{k-1} \frac{i+j+1+\ell}{i+j+1}.$$

Additionally, N(k, n, h) = N(k, n, (k-1)(n-1) - h).

Goal: give a bijective proof of this symmetry.

Arrow encodings of SYT

We encode standard Young tableaux using arrows that describe the placement of the entries:

$$1 \quad 2 \downarrow 6 \downarrow 9 \quad 10 \downarrow 15 \downarrow$$

$$\uparrow \quad 3 \downarrow 5\uparrow \downarrow \uparrow 11 \downarrow \uparrow \downarrow 17 \quad 18 \downarrow 22 \downarrow$$

$$\uparrow \quad 4 \uparrow \downarrow 8\uparrow \downarrow \uparrow 16 \uparrow \downarrow 21 \uparrow \downarrow 24 \downarrow 27 \downarrow$$

$$\uparrow \quad 7 \quad \uparrow \quad 12 \downarrow \uparrow \quad 19 \downarrow \uparrow \quad 23 \uparrow \downarrow \quad 26 \uparrow \quad 28 \downarrow$$

$$\uparrow \quad 13 \quad 14 \uparrow \quad 20 \uparrow \quad 25 \uparrow \quad 29 \quad 30$$

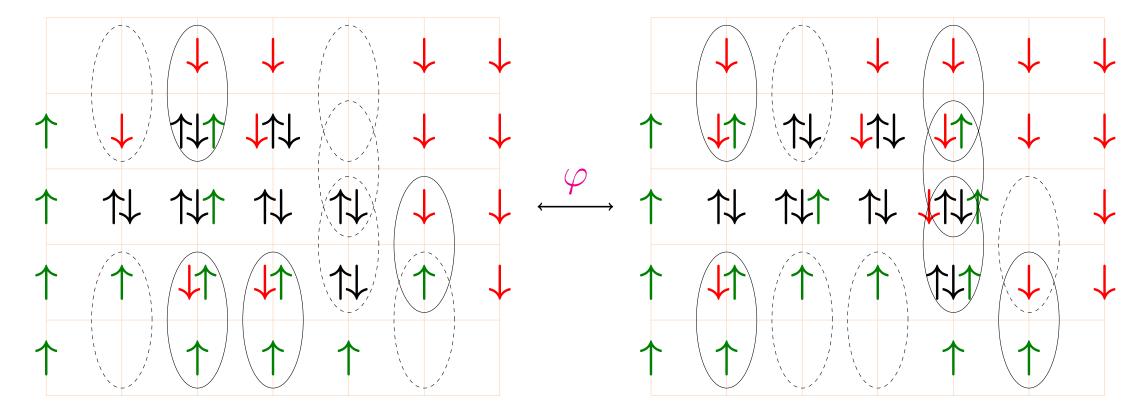
leading ↓ = leftmost ↓ in its block trailing ↑ = rightmost ↑ in its block

The bijections

Description of φ : For every pair of arrow blocks $\stackrel{A}{B}$ with $\stackrel{A}{A}$ immediately above $\stackrel{B}{B}$,

• if A has a leading \downarrow and B has a trailing \uparrow , remove these arrows;

• if A has no leading \downarrow and B has no trailing \uparrow , add these arrows.



Description of ψ : (Similar to φ , switching the roles of leading and trailing arrows.) **Description of** β : Reverse (i.e., read from right to left) each block of arrows.

Main results

Theorem

The maps φ, ψ, β are involutions on $SYT(n^k)$ satisfying

$$des(T) + des(\varphi(T)) = (k-1)(n+1),$$

$$asc(T) + asc(\psi(T)) = (k-1)(n-1),$$

$$des(T) = asc(\beta(T)) + k - 1, \quad asc(T) + k - 1 = des(\beta(T)).$$

Proposition

The map φ commutes with conjugation, i.e., $\varphi(T)' = \varphi(T')$.

Let $\tau = (n, n-1, \dots, n-k+1)$ be a **truncated staircase**.

Theorem

(A slight variation of) ψ is an involution on SYT(τ) satisfying

$$asc(T) + asc(\psi(T)) = \frac{(2n-k)(k-1)}{2}.$$

A rowmotion operation on SYT

Rowmotion on Dyck paths (viewed as order ideals of the type A root poset) is a bijection that takes valleys to high peaks (i.e., peaks at height > 1).

We can generalize rowmotion to $SYT(n^k)$.

Say that i is a high descent of T if i + 1 is lower than and to the left of i.

Proposition

The map $\rho: \mathrm{SYT}(n^k) \to \mathrm{SYT}(n^k)$ defined by $\rho(T) = \beta(\varphi(\beta(T))')'$ is a bijection satisfying $\mathrm{asc}(T) = \mathrm{hdes}(\rho(T))$.

We get a bijective proof of the symmetry N(k, n, h) = N(n, k, h). More generally...

Theorem

For **any** λ , there is a bijection $\rho: \mathrm{SYT}(\lambda) \to \mathrm{SYT}(\lambda)$ s.t. $\mathrm{asc}(T) = \mathrm{hdes}(\rho(T))$.

Linear extensions of posets

The symmetry N(k, n, h) = N(k, n, (k-1)(n-1) - h) is also a special case of:

Theorem (Stanley '72)

In any graded poset P, the distribution of the number of descents on linear extensions of P (with respect to any given natural labeling) is symmetric.

In '81, Stanley asked for a bijective proof of this symmetry, even in special cases. Our bijection ψ does this for rectangular shapes $P = \mathbf{k} \times \mathbf{n}$ and truncated staircases.

Problem

Give a bijective proof of Stanley's theorem for other graded posets P.

FIEA TikZposter