

On the reconstruction of trees from their chromatic symmetric function

Michael Gonzalez¹, Rosa Orellana¹, Mario Tomba^{1,2}

¹Dartmouth College ²The University of Chicago

The Chromatic Symmetric Function

Let G be a graph with vertex set $\{v_1, \ldots, v_n\}$.

A proper coloring is $\kappa : [n] \to \mathbb{P}$ such that $\kappa(v_i) \neq \kappa(v_j)$ whenever $v_i v_j \in E(G)$ Stanley defined the chromatic symmetric function (CSF) as a sum over proper colorings:

$$\mathbf{X}_G = \sum_{\kappa} x_{\kappa(v_1)} \cdots x_{\kappa(v_n)}.$$

The CSF specializes to the chromatic polynomial:

$$\mathbf{X}_G(\underbrace{1,\ldots,1}_k,0,\ldots)=\chi_G(k).$$

As an example:

$$G =$$

$$\mathbf{X}_{G} = 4 \sum_{i \neq j < k} x_{i}^{2} x_{j} x_{k} + 24 \sum_{i < j < k < l} x_{i} x_{j} x_{k} x_{l}$$

The *power-sum* symmetric function of degree r is $p_r \coloneqq \sum_i x_i^r$

Theorem (Stanley): We have

$$\mathbf{X}_G = \sum_{A \subseteq E} (-1)^{|A|} p_{\lambda(A)},$$

where $\lambda(A)$ has as parts the orders of the connected components of $G|_A$.

Conjecture (Stanley 1995): Let T_1, T_2 be non-isomorphic trees. Then, $\mathbf{X}_{T_1} \neq \mathbf{X}_{T_2}$

The Star Basis

A star graph on n vertices $St_{(n)}$ is a tree with n-1 leaf vertices and one vertex of degree n-1.

For a partition $\lambda = (\lambda_1, \dots, \lambda_k)$, we define the *star forest* indexed by λ as follows:

$$St_{\lambda} = St_{\lambda_1} \cup \cdots \cup St_{\lambda_k}.$$

Denote $\mathfrak{st}_n\coloneqq \mathbf{X}_{St_n}$.

Theorem (Cho-van Willigenburg): In terms of the power-sum symmetric functions:

$$\mathfrak{st}_{n+1} = \sum_{r=0}^{n} (-1)^r \binom{n}{r} p_{(r+1,1^{n-r})}.$$

Similarly as above, for $\lambda = (\lambda_1, \dots, \lambda_k)$, we have:

$$\mathfrak{st}_{\lambda}=\mathfrak{st}_{\lambda_1}\cdots\mathfrak{st}_{\lambda_k}$$

Theorem (Cho-van Willigenburg): $\{\mathfrak{st}_{\lambda} : \lambda \vdash n\}$ is a basis for the algebra of symmetric functions of degree n.

For $\lambda, \mu \vdash n$, we say that $\lambda \leq \mu$ in *lexicographic order* if $\lambda = \mu$ or if

- $\lambda_i = \mu_i$ for $1 \leq i < j$, and
- $\lambda_j < \mu_j$ for some $1 \le j \le \ell(\lambda)$

Thus, we write X_G in increasing lexicographic order:

$$\mathbf{X}_G = \sum_{\lambda \vdash n} c_{\lambda} \mathfrak{st}_{\lambda}.$$

We say $e \in E$ is an *internal edge* if both of its endpoints have degree at least two. Let I(T) denote the set of internal edges of a tree T.

Theorem: In the star-basis expansion, we have:

$$c_{(n-k,1^k)} = \binom{|I(T)|}{k}$$

Deletion-Near-Contraction

We can write the CSF compactly using the star-basis:

$$\mathbf{X}_G = \sum_{\lambda \vdash n} c_{\lambda} \, \mathfrak{st}_{\lambda}$$

The DNC relation expresses the CSF of a forest recursively as a linear combination forests with fewer internal edges [1]:

$$\mathbf{X}_G = \mathbf{X}_{G \setminus e} - \mathbf{X}_{(G \odot e) \setminus \ell_e} + \mathbf{X}_{G \odot e}$$

Recursively applying the DNC relation, we obtain a DNC tree.

 $\stackrel{e}{\longrightarrow} \stackrel{G \setminus e}{\longrightarrow}$

$$\mathbf{X}_{G} = -\mathfrak{st}_{(4,2,1)} + \mathfrak{st}_{(4,3)} + \mathfrak{st}_{(5,1,1)} + \mathfrak{st}_{(5,2)} - 2\mathfrak{st}_{(6,1)} + \mathfrak{st}_{(7)}$$

Theorem (Aliste Prieto-de Mier-Orellana-Zamora): We have

$$c_{\lambda} = (-1)^m |\mathcal{S}_{\lambda}|,$$

where S_{λ} is the set of paths in a DNC tree $\mathcal{T}(G)$ that end in a star forest H whose connected components' orders are given by the parts in λ , and m is the number of dot-contractions performed throughout any of these paths.

The Leading Partition

A *leaf component* of a forest F is a connected component of $F \setminus I(F)$.

Let $\lambda_{LC}(F)$ denote the partition whose parts are the orders of the leaf components of F.

Let $\lambda_{\mathrm{lead}}(\mathbf{X}_F)$ denote the smallest partition in lexicographic order with nonzero coefficient in \mathbf{X}_F .

Theorem: For any forest F, we have:

$$\lambda_{\text{lead}}(\mathbf{X}_F) = \lambda_{LC}(F).$$

A deep vertex is an internal vertex with no leaves on its neighborhood.

Theorem: Let F be a forest with deep vertices u_1, \ldots, u_m . Then:

$$c_{\lambda_{\text{lead}}} = (-1)^m \prod_{i=1}^m (\deg(u_i) - 1).$$

An *extended bi-star* is a tree consisting of two star graphs whose centers are connected by a path of one or more deep vertices of degree 2.

Example: The following extended bi-star has leading partition $(6, 4, 1^4)$.

Theorem: Let T be a tree of order n. Then, $\lambda_{\text{lead}}(\mathbf{X}_T) = (i, j, 1^{n-i-j})$ for some i, j > 1 if and only if T is an extended bi-star with leaf-stars St_i and St_j separated by n-i-j deep vertices of degree 2. Therefore, bi-stars and extended bi-stars are distinguished by their CSF.

Edge adjacencies

Two leaf components $\mathcal{L}_1, \mathcal{L}_2$ are adjacent if their central vertices v_1, v_2 are adjacent.

We say $\mathcal{L}_1, \mathcal{L}_2$ are the *leaf component endpoints* of v_1v_2 .

Theorem: Let \mathbf{X}_T be the CSF of a tree T with no deep vertices. Let p,q be two parts in $\lambda_{\mathrm{lead}}(\mathbf{X}_T)$ and let

$$\mu = \operatorname{sort}(p + q, \lambda_{\text{lead}} - \{p, q\}).$$

Then, c_{μ} is the number of edges with leaf component endpoints of orders p and q.

Corollary: Let X_T be the CSF of a tree T with no deep vertices such that all parts in $\lambda_{\text{lead}}(X_T)$ are different. Then, T is reconstructible from X_T .

Example Consider \mathbf{X}_T with $\lambda_{\text{lead}}(\mathbf{X}_T) = (9, 7, 6, 5, 4, 3, 2)$.

μ	c_{μ}	E_{μ}
$\boxed{(16,6,5,4,3,2)}$	$) \mid \overline{1}$	$\{9,7\}$
(15, 7, 5, 4, 3, 2)	$) \mid 1$	$\{9,6\}$
(11, 9, 7, 4, 3, 2)) 1	$\{6,5\}$
(10, 9, 7, 5, 3, 2)) 1	$\{6,4\}$
(9,7,7,6,5,2)	1	$\{4,3\}$
(9,7,6,6,5,3)	1	$\{4,2\}$

Trees of small diameter

Let $\{v_1, \ldots, v_k\}$ be the set of internal vertices of a tree T whose internal degree is strictly greater than one. Let L_i be the set of leaf vertices adjacent to v_i .

The internal subgraph of T is the subgraph $\mathcal{I}_T \subseteq T$ induced by $\{v_1,\ldots,v_k\} \cup L_1 \cup \cdots \cup L_k$.

Theorem: Let X_T be the CSF of a tree with no deep vertices. Let p be a part in $\lambda_{\text{lead}}(X_T)$. Then, a leaf component of order p is contained in \mathcal{I}_T if and only if:

$$N(p) := \sum m_p(E_{\mu}) \cdot c_{\mu} > m_p(\lambda_{\text{lead}}),$$

where the sum runs over partitions μ with $c_{\mu} > 0$ and $\ell(\mu) = \ell(\lambda_{\text{lead}}(\mathbf{X}_T)) - 1$.

Corollary: Trees of diameter 4 can be reconstructed from X_T .

Example: Consider \mathbf{X}_T with $\lambda_{\mathrm{lead}}(\mathbf{X}_T) = (5,4,3,3,2)$

μ	c_{μ}	E_{μ}
5, 3, 3)	1	$\{4,2\}$
5, 3, 2)	1	$\{4,3\}$
3, 3, 2)	1	$\{5,4\}$

Theorem: Let \mathbf{X}_T be the CSF of a tree of diameter 5. Then, T can be reconstructed from \mathbf{X}_T . **Proof idea:** Let $T \setminus e = T_1 \sqcup T_2$ where $e \in E(\mathcal{I}_T)$. From λ_{lead} and \mathcal{I}_T , we can recover $\mathbf{X}_{T \odot e}$ and $\mathbf{X}_{(T \odot e) \setminus \ell_e}$, so we can recover $\mathbf{X}_{T_1} \mathbf{X}_{T_2}$. The smallest partition in this product is, without loss of generality, $\lambda_{\mathrm{lead}}(\mathbf{X}_{T_1})$, and $\lambda_{\mathrm{lead}}(\mathbf{X}_T) - \lambda_{\mathrm{lead}}(\mathbf{X}_{T_1}) = \lambda_{\mathrm{lead}}(\mathbf{X}_{T_2})$. Knowing these partitions and the leaf components in \mathcal{I}_T allow for a reconstruction of T.

References

- [1] José Aliste-Prieto, Anna de Mier, Rosa Orellana, and José Zamora, *Marked graphs and the chromatic symmetric function*, SIAM Journal on Discrete Mathematics **37** (2023), no. 3, 1881–1919.
- [2] Soojin Cho and Stephanie van Willigenburg, *Chromatic bases for symmetric functions*, Electron. J. Combin. **23** (2016), no. 1, Paper 1.15, 7. MR 3484720
- [3] Michael Gonzalez, Rosa Orellana, and Mario Tomba, The chromatic symmetric function in the star-basis, 2024.
- [4] Richard P. Stanley, A symmetric function generalization of the chromatic polynomial of a graph, Adv. Math. 111 (1995), no. 1, 166–194. MR MR1317387 (96b:05174)