Laboratoire d'algèbre, de combinatoire et d'informatique mathématique

The h^* -polynomials of TYPE C HYPERSIMPLICES

ANTOINE ABRAM AND JOSE BASTIDAS

ROOT SYSTEMS AND ALCOVED POLYTOPES

Let $\Phi = \Phi_{C_n}$ be the root system of type C_n , with simple roots

$$\alpha_1 = 2e_1$$
 and $\alpha_i = e_i - e_{i-1}$, for $2 \le i \le n$.

For this set of simple roots, the highest root is $\theta = 2e_n$. The affine Coxeter arrangement \mathcal{H}_{Φ} consists of the hyperplanes

$$H_{\alpha,k} = \{x \in \mathbb{R}^n \mid \langle x, \alpha \rangle = k\}, \text{ for } \alpha \in \Phi^+, k \in \mathbb{Z}.$$

These hyperplanes subdivide \mathbb{R}^n into the **alcoves** of \mathcal{H}_{Φ} .

Definition (Lam and Postnikov). A polytope $P \subset \mathbb{R}^n$ is an **alcoved polytope** if it is the union of alcoves of \mathcal{H}_{Φ} . Equivalently, P is defined by inequalities of the form $a_{\alpha} \leq \langle x, \alpha \rangle \leq b_{\alpha}$ for $\alpha \in \Phi^+$ and $a_{\alpha}, b_{\alpha} \in \mathbb{Z}$.

Example. The fundamental alcove

$$A_{\circ} := \{ x \in \mathbb{R}^n \mid 0 \le \langle x, \alpha \rangle \le 1, \alpha \in \Phi^+ \}$$

is an alcoved polytope.

The fundamental parallelepiped is

$$\Pi_n := \{ x \in \mathbb{R}^n \mid 0 \le 2x_1, x_2 - x_1, \dots, x_n - x_{n-1} \le 1 \}.$$

We denote by \mathcal{I}_{C_n} the *weak order* on the alcoves in Π_n with base region A_{\circ} .

The type C hypersimplices are

$$\Delta_{C_n,k} := \{ x \in \Pi_n \mid k - 1 \le 2x_n \le k \},\,$$

and the type C half-open hypersimplices are

$$\Delta'_{C_n,k} := \{ x \in \Pi_n \mid k - 1 < 2x_n \le k \},\$$

except at k=1, for which $\Delta'_{C_n,1}:=\Delta_{C_n,1}.$ The lattice generated by the vertices of the fundamental alcove $A_{\circ} = \Delta_{C_n,1}$ is $\Lambda = \frac{1}{2}\mathbb{Z}^n$ and is exactly the collection of vertices of the alcoves of \mathcal{H}_{Φ} .

Two Formulas for the h^* -Polynomials of Δ'_{C-h}

Let $\Lambda\subset\mathbb{R}^n$ be a lattice. The **Ehrhart polynomial** of a lattice polytope P is $L_P(r)=L_P^\Lambda(r):=|rP\cap\Lambda|$. The h^* -polynomial of P is

$$h_P^*(t) := (1-t)^{\dim(P)+1} \sum_{r>0} L_P(r)t^r.$$

It has positive coefficients (Stanley) and $Vol(P) = h_P^*(1)$.

- Definition 1

For n > 1, let

$$X_n := \{ w \in \mathfrak{B}_n \mid w^{-1}(1) \in [n] \}.$$

Using generating functions, we prove the following.

Theorem 2

For all $n \ge 1$ and $k \ge 1$,

$$h^*_{\Delta'_{C_n,k}}(t) = \sum_{\substack{w \in X_n \colon \\ \operatorname{fexc}(w) = k-1}} t^{\operatorname{des}_W(w)},$$

where des_W denotes the Coxeter descent of \mathfrak{B}_n and

$$fexc(w) := 2|\{i \in [n-1] \mid w_i > i\}| + |\{i \in [n] \mid w_i < 0\}|$$

is the flag-excedance statistic of Foata and Han.

We obtain another formula of the h^* -polynomials of the hypersimplices using a shelling of their alcove triangulations.

Theorem 3

For $n \ge 1$ and $k \ge 1$,

$$h^*_{\Delta'_{C_n,k}}(t) = \sum_{\substack{w \in X_n : \\ \operatorname{cdes}(w^{-1}) = k}} t^{\operatorname{basc}(w)}.$$

See details below.

ORDER ON (HALF OF) THE SIGNED PERMUTATIONS

For $n \in \mathbb{N}$, let $[\![n]\!] := \{\overline{n}, \cdots, \overline{1}, 1, \cdots, n\}$. For $i, j \in [\![n]\!]$,

 $i \ll j \stackrel{\text{def}}{\iff} i < k < j \text{ for some } k \in [n], \text{ and }$

 i^+ denotes the **cyclic successor** of i in [n].

Definition 4 -

The **big ascent set** of $w \in X_n$ is

$$BAsc(w) := \{ i \in \{\overline{1}\} \cup [n] \mid w_i \ll w_{i+} \}.$$

We write basc(w) := |BAsc(w)|.

Definition 5

Theorem 6

Let \rightharpoonup be the following binary relation on X_n : we say $u \rightharpoonup w$, with $w = w_1 w_2 \dots w_{n-1} w_n$, if

$$\begin{array}{ll} \vec{1} \in \operatorname{BAsc}(w) & \text{and } u = \overline{\mathbf{w}_1} w_2 \dots w_{n-1} w_n; \text{ or } \\ i \in \operatorname{BAsc}(w) & \text{and } u = \dots w_{i-1} \underline{\mathbf{w}_{i+1}} \underline{\mathbf{w}_i} w_{i+2} \dots; \text{ or } \\ n \in \operatorname{BAsc}(w) & \text{and } u = w_1 w_2 \dots w_{n-1} \overline{\mathbf{w}_n}. \end{array}$$

The posets (X_n, \leq) for n = 2, 3 with $\hat{}$ denoting BAsc. **Example.** $h^*_{\Delta'_{C_0,3}}(t) = 5t + 5t^2$.

FROM PERMUTATIONS TO ALCOVES

Lam and Postnikov defined the circular descent statistic. Explicitly, in our setting, we have the following

$$i \in \mathrm{CDes}(w^{-1}) \Longleftrightarrow \begin{array}{c} i^+ \text{ appears before } i \text{ in} \\ w_{\overline{n}} \cdots w_{\overline{1}} w_1 \cdots w_n. \end{array}$$

We prove Theorem 6 by explicitly constructing the vertices $v^1(w), \ldots, v^{n+1}(w)$ of A(w) recursively as follows. First, $v^{n+1}(w) = (v_1^{n+1}(w), \cdots, v_n^{n+1}(w))$ where

$$v_i^{n+1}(w) := |\overline{i}, \overline{1}| \cap \operatorname{CDes}(w^{-1})|, \quad \text{for } i = 1, 2, \dots, n.$$

Then, for $k \in [n]$, let

$$v^k(w) := v^{k+1}(w) + \frac{1}{2}e_{w_k} = v^{n+1}(w) + \frac{1}{2}(e_{w_k} + \dots + e_{w_n}).$$

Example 8. Let $w = \overline{5}3\overline{1}2\overline{4}4\overline{2}1\overline{3}5$. One has $CDes(w^{-1}) =$ $\{\overline{3},\overline{2},1,2\}$. Since $\mathrm{CDes}(w^{-1})\cap [\overline{5},\overline{1}]=\{\overline{2},\overline{3}\}$, then $v^6(w)=(0,1,2,2,2)$. The other $v^i=v^i(w)$ are

$$\begin{split} v^5 &= v^6 + \frac{1}{2}e_5 = (0,1,2,2,\frac{5}{2}), \\ v^4 &= v^5 - \frac{1}{2}e_3 = (0,1,\frac{3}{2},2,\frac{5}{2}), \\ v^3 &= v^4 + \frac{1}{2}e_1 = (\frac{1}{2},1,\frac{3}{2},2,\frac{5}{2}), \\ v^2 &= v^3 - \frac{1}{2}e_2 = (\frac{1}{2},\frac{1}{2},\frac{3}{2},2,\frac{5}{2}) \text{ and,} \\ v^1 &= v^2 + \frac{1}{2}e_4 = (\frac{1}{2},\frac{1}{2},\frac{3}{2},\frac{5}{2},\frac{5}{2}). \end{split}$$

The relation \rightarrow is the cover relation of a partial order on X_n , and there is an poset isomorphism $A: X_n \rightarrow \mathcal{I}_{C_n}$. Moreover, for every $w \in X_n$, the alcove $\hat{A}(w)$ lies inside the hypersimplex $\Delta_{C_n, \operatorname{cdes}(w^{-1})}$.

VOLUME AND EULERIAN NUMBERS

Denote the type BC Eulerian numbers by

$$B_{n,k} := |\{w \in \mathfrak{B}_n \mid \operatorname{des}_W(w) = k\}|.$$

Using a bijection between X_n and its complement and connections between flag statistic and Coxeter descents, we proved the following surprising relation.

Proposition 7. For all $n \ge 1$ and $k \ge 0$,

$$B_{n,k} = \operatorname{Vol}(\Delta_{C_n,2k-1}) + 2\operatorname{Vol}(\Delta_{C_n,2k}) + \operatorname{Vol}(\Delta_{C_n,2k+1}),$$

where $Vol(\Delta_{C_n,j}) = 0$ whenever j < 1 or j > 2n - 1.

LIMITING POSET

Theorem 9. For all $n \geq 2$, the map $Y_{n-1} \rightarrow Y_n : w \rightarrow wn$ is a poset embedding. Moreover, the colimit in the category of posets of the diagram $(Y_1 \to Y_2 \to Y_3 \to \dots)$ is the lattice of

REFERENCES

- Antoine Abram, Nathan Chapelier-Laget, and Christophe Reutena order on circular permutations". In: *Electron. J. Combin.* 28.3 (2021)
- Eugène Ehrhart. "Sur les polyèdres rationnels homothétiques à n dimensions". In: C. R. Acad. Sci. Paris 254 (1962).
- Dominique Foata and Guo-Niu Han. "Signed words and permutations. V. A sextuple distribution". In: Ramanujan J. 19.1 (2009).
- Thomas Lam and Alexander Postnikov. "Alcoved polytopes 1". In: $Discrete Comput.\ Geom.\ 38.3\ (2007).$ Thomas Lam and Alexander Postnikov. "Alcoved polytopes II". In: Lie groups, geometry, and representation theory. Vol. 326. Progr. Math. Birkhäuser/Springer, Cham, 2018.
- "Ehrhart h*-vectors of hypersimplices". In: Discrete Comput. Geom
- Nathan Reading. "Lattice congruences, fans and Hopf algebras". In: J. Combin. Theory Ser. A 110.2 (2005).
- Richard P. Stanley. "Decompositions of rational convex polytopes". In: Ann. Discrete Math. 6 (1980).