

A new definition for *m*-Cambrian lattices

Clément Chenevière & Wenjie Fang* & Corentin Henriet

Ulish, Université Paris-Saclay, Gif-sur-Yvette, France.

• IRIF, Université Paris-Cité, Paris, France.

[☼]Univ Gustave Eiffel, CNRS, LIGM, F-77454 Marne-la-Vallée, France. [⊙]DiMaI, Università degli Studi di Firenze, Florence, Italy.

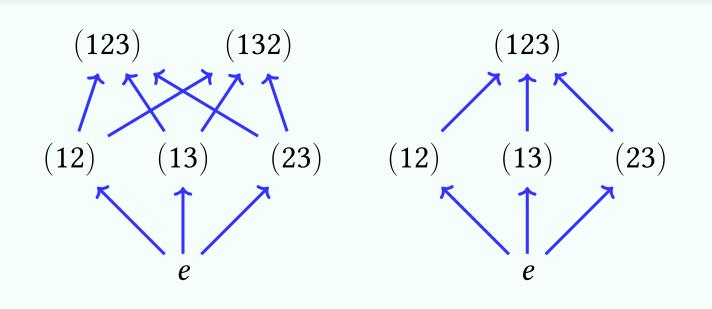
The Cambrian lattices, introduced by Reading [Reading, 2006], generalize the Tamari lattice [Tamari, 1962] to any choice of Coxeter element in any finite Coxeter group. They are further generalized to the *m*-Cambrian lattices [Stump et al., 2020]. We propose a new definition for *m*-Cambrian lattices, where the objects are *m*-multichains in the noncrossing partition lattice, with an explicit comparison criterion.

Noncrossing partitions and Cambrian lattice

Definition

A (standard) Coxeter element c in a Coxeter group W is a product of all simple reflections in some order. Coxeter elements are always maximal in the absolute order Abs(W).

The **noncrossing partition lattice** NCL(W, c) is the interval [e, c] in the absolute order Abs(W).

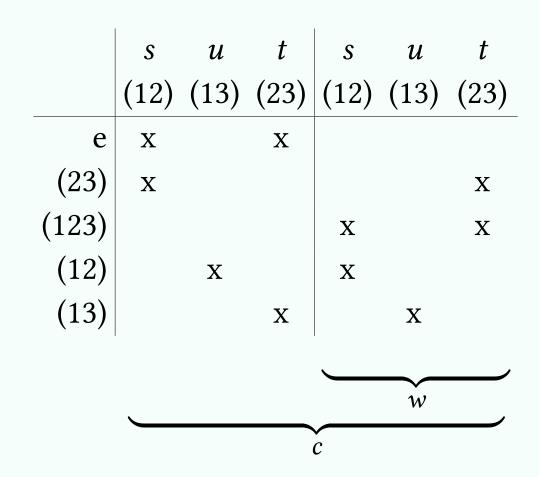


Example

The absolute order on \mathfrak{S}_3 (left) and the noncrossing partition lattice $NCL(\mathfrak{S}_3,(123))$ (right).

Proposition [C. Athanasiadis, T. Brady, and C. Watt, '07]

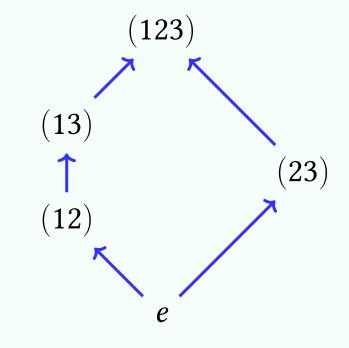
The choice of a Coxeter element c leads to a total order R(c) on all reflections. Each c-noncrossing partition has a unique \mathcal{R} -word with letters increasing in R(c). They are thus in bijection with subwords of the word $R(c)^2$ that are reduced \mathcal{R} -words for c, which are called **1-factorizations of** c.



Definition

A **rotation** of a 1-factorization of c consists in moving a cross in the first copy of R(c) to the second, conjugating every cross in between.

The Cambrian lattice Camb(W, c) is the poset on 1-factorizations obtained as the transitive closure of **rotations**.



Example

The Cambrian lattice $Camb(\mathfrak{S}_3, (123))$.

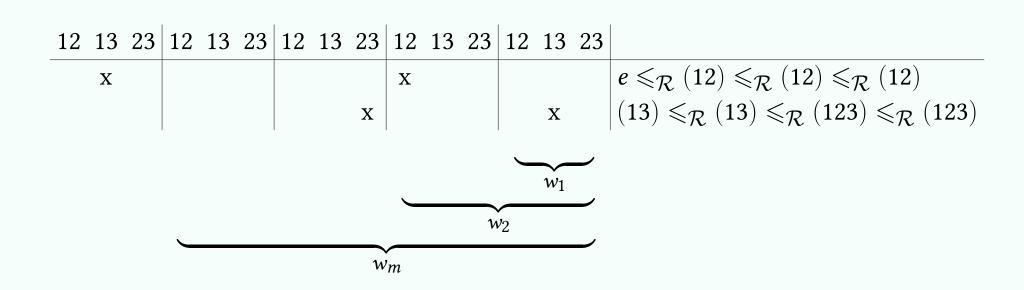
New definition of the *m*-Cambrian lattices

Definition

An *m*-factorization of a Coxeter element c is a subword of $R(c)^{m+1}$ that is a reduced \mathcal{R} -word for c.

Proposition [D. Armstrong, '09]

Multichains with m elements in the poset NCL(W, c) are in bijection with m-factorizations of c.



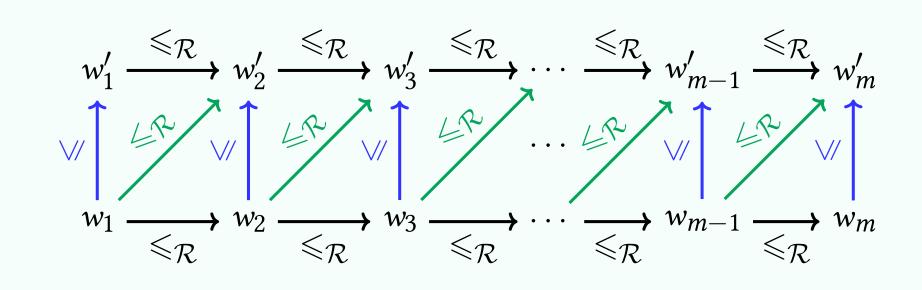
Example

Two 4-noncrossing partitions in $NCL(\mathfrak{S}_3, (123))$.

Definition

For *m*-noncrossing partitions $w_{(m)}, w'_{(m)}$, we set $w_{(m)} \leq_{(m)} w'_{(m)}$ if

- 1. Vertical condition: For all $1 \leqslant i \leqslant m$, $w_i \leqslant w'_i$ in Camb(W, c);
- 2. **Diagonal condition**: For all $1 \le i < m$, $w_i \le_{\mathcal{R}} w'_{i+1}$ in NCL(W, c).



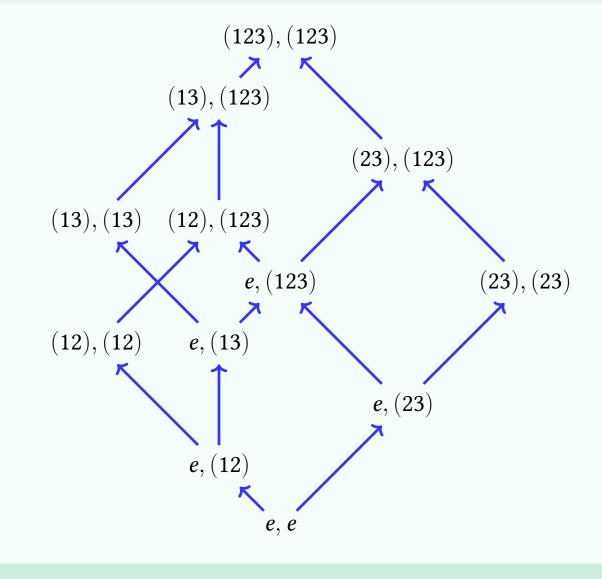
Example

Since $e \leqslant (13)$, $(12) \leqslant (13)$, $(12) \leqslant (123)$, and $(12) \leqslant (123)$ in $\operatorname{Camb}(\mathfrak{S}_3, (123))$, the vertical condition is satisfied.

Since $e \leqslant_{\mathcal{R}} (12)$, $(13) \leqslant_{\mathcal{R}} (13)$, and $(13) \leqslant_{\mathcal{R}} (123)$ in NCL(\mathfrak{S}_3 , (123)), the diagonal condition is also satisfied.

Theorem [C., Fang, Henriet, '24+]

The binary relation $\leq_{(m)}$ is a partial order on m-noncrossing partitions, which is isomorphic to the m-Cambrian lattice $\operatorname{Camb}^{(m)}(W,c)$.



Example

The 2-Cambrian lattice $Camb^{(2)}(\mathfrak{S}_3, (123))$.

c-increasing chains and greedy algorithm

Definition

If $w \lessdot w'$ is a covering relation, define the **flip reflection** r(w, w') as the selected letter of w that is sent to the next copy.

A saturated chain $w_0 < w_1 < ... < w_m$ is a *c*-increasing chain if its sequence $(r(w_i, w_{i+1}))$ of flip reflections is increasing with respect to $R(c)^{m+1}$.

Proposition: Unicity of *c*-increasing chain

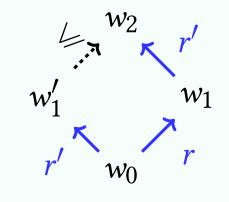
For $w \le w'$ in the m-Cambrian lattice, if there exists a c-increasing chain from w to w', then the smallest letter of w that is not a letter of w' is the smallest flip reflection in any saturated chain from w to w'. Thus, a c-increasing chain from w to w' is **unique**.

Proposition: Existence

If $w \le w'$ in the m-Cambrian lattice, there **exists** a c-increasing chain from w to w'.

Local reordering lemma

Let $w_0 \lessdot w_1 \lessdot w_2$ in $\operatorname{Camb}^{(m)}(W, c)$ with $r(w_0, w_1) > r(w_1, w_2) = r'$. Then $r' \in w_0$, and for w'_1 the upper cover of w_0 with $r(w_0, w'_1) = r'$, we have $w'_1 \leqslant w_2$.



Proposition

We have a greedy algorithm that decides comparability efficiently in the m-Cambrian lattice. It consists of reading the letters of $R(c)^{m+1}$ from left to right, and try to flip each letter in turn.

Proposition

If the flip root of a covering relation appears in the *i*-th copy of R(c), then only the entry w_{m-i} of the *m*-noncrossing partition is modified.

Corollary

The existence of such an increasing *c*-chain between two elements is equivalent to our comparison scheme of $\leq_{(m)}$.

Further directions and open questions

Corollary

Since the unique *c*-increasing chain of each interval is lexicography smaller than all other chains, the *m*-Cambrian lattices are EL-shellable.

Corollary

We can efficiently generate the Cambrian lattices thanks to the greedy algorithm, and all m-Cambrian lattices thanks to the new comparison criterion.

Remark

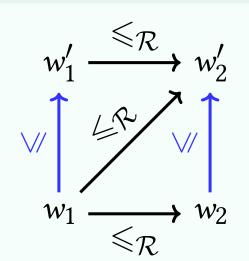
Our proofs are inductive and uniform, involving all Coxeter groups and all choices of Coxeter element at the same time.

- Bousquet-Mélou, M., Fusy, É., and Préville-Ratelle, L.-F. (2012). The number of intervals in the *m*-Tamari lattices. *Electron. J. Comb.*, 18(2):research paper p31, 26.
- Reading, N. (2006). Cambrian lattices.

Corollary

We can define a binary relation on Cambrian intervals, such that $[w_1, w_1'] \leqslant [w_2, w_2']$ if $w_1 \leqslant_{\mathcal{R}} w_2$, $w_1 \leqslant_{\mathcal{R}} w_2'$, and $w_2 \leqslant_{\mathcal{R}} w_2'$ in the noncrossing partition lattice $\mathrm{NCL}(W, c)$.

This relation is transitive and antisymmetric, and its m-multichains are in bijection with intervals in the m-Cambrian lattice.



Adv. Math., 205(2):313-353.

Stump, C., Thomas, H., and Williams, N. (2020).

Cataland: why the Fuss?

In Proceedings of the 28th international conference on formal power series and algebraic combinatorics, FPSAC 2016, Vancouver, Canada, July 4–8,

Question

Can we use this "almost" poset structure on Cambrian chains in order to understand the conjecture that there are as many intervals in the linear type-*A m*-Cambrian lattice as in the *m*-Tamari lattice? [Bousquet-Mélou et al., 2012, Stump et al., 2020]

Question

The noncrossing partition lattice corresponds to the shard order (i.e. core label order) of the Cambrian lattice. Can we generalize this *m*-construction by replacing the Cambrian lattice by some other lattices, e.g. distributive lattices, or semidistributive and congruence-uniform (and trim?) lattices?

2016, pages 1123–1134. Nancy: The Association. Discrete Mathematics & Theoretical Computer Science (DMTCS).

Tamari, D. (1962).

The algebra of bracketings and their enumeration. *Nieuw Arch. Wiskd., III. Ser.*, 10:131–146.