

BOOLEAN STRUCTURE CONSTANTS

Yibo Gao¹ and Hai Zhu²

¹Beijing International Center for Mathematical Research, Peking University; ²School of Mathematical Sciences, Peking University

Motivation

- The Schubert problem asks for combinatorial interpretations of the structure constants $c_{u,v}^w \in \mathbb{Z}_{\geq 0}$ in the expansion $\sigma_u \cdot \sigma_v = 0$ $\sum_{w} c_{u,v}^w \sigma_w$ with respect to the Schubert classes $\sigma_w \in H^*(G/B; \mathbb{Z})$.
- Boolean elements plays a crucial role in the study of Schubert calculus. For instance, the Schubert variety X_w is a toric variety if and only if w is boolean (4), and the Schubert variety $X_{w_0(I)c}$ is L_I -spherical if and only if c is boolean (2, 3).

Goal: Make progress towards the Schubert problem in the boolean case.

Background

- ullet A Weyl group element $w \in W$ is **boolean** if and only if w is a product of distinct simple reflections.
- The **boolean diagram** B(w) of a boolean element $w \in W$:

e.g.
$$w = s_3 s_2 s_4 s_5 s_7 \in W(E_7)$$
.

- Define two kinds of boolean insertions and their multiplicities mul() and weights wt() as follows:
- Non-equivariant boolean insertions:

For the Dynkin diagram of type C_4 , there are **two** edges from α_4 to α_3 and one edge from α_3 to α_4 .

Equivariant boolean insertions:

Main Results

Let G be a complex, connected, reductive algebraic group and B be a Borel subgroup of G with a maximal torus T and the Weyl group $W = N_G(T)/T$.

$$d_{u,v}^{w} = \begin{cases} \sum\limits_{\substack{\mathbf{S}(v) \\ u \leadsto w}} \mathrm{mul}(u \overset{\mathbf{S}(v)}{\leadsto} w) \cdot \mathrm{wt}(u \overset{\mathbf{S}(v)}{\leadsto} w), & \text{if there exists a boolean insertion path } v \overset{\mathbf{S}(u)}{\leadsto} w \\ 0, & \text{otherwise} \end{cases}$$

where the summation is over all boolean insertion paths $u \stackrel{\mathrm{S}(v)}{\leadsto} w$.

Corollary 1 (Cohomology version) For boolean elements $u, v, w \in W$,

$$c_{u,v}^{w} = \begin{cases} \sum\limits_{\substack{\mathbf{u} \leq v \\ u \leadsto w}} \mathrm{mul}(u \overset{\mathbf{S}(v)}{\leadsto} w), & \text{if there exists a non-equivariant boolean insertion path } v \overset{\mathbf{S}(u)}{\leadsto} w \\ 0, & \text{otherwise} \end{cases}$$

where the summation is over all non-equivariant boolean insertion paths $u \stackrel{\mathrm{S}(v)}{\leadsto} w$.

The implementation of Corollary 1 yields a **multiplicity-free** result in type A.

Corollary 2 (Multiplicity-free) For boolean elements u, v, w in the Weyl group of type A, $c_{u,v}^w=1$ if there exist non-equivariant boolean insertion paths $u\overset{\mathrm{S}(v)}{\leadsto}w$ and $v\overset{\mathrm{S}(u)}{\leadsto}w$; $c_{u,v}^w=0$ otherwise.

Proof of Theorem 1 (Sketch)

• Step 1: The equivariant Chevalley's formula (1, p.351, Theorem 19.1.2) indicates that

$$[\xi_w] \Big(\xi_u \prod_{\beta \in S} \xi_{s_\beta} \Big) = \sum_{\substack{u \stackrel{S}{\leadsto} w}} \operatorname{mul}(u \stackrel{S}{\leadsto} w) \operatorname{wt}(u \stackrel{S}{\leadsto} w).$$

• Step 2: A very unique property of boolean elements: If $u \overset{\mathrm{S}(v)}{\leadsto} w$ and $v \overset{\mathrm{S}(u)}{\leadsto} w$, then

$$[\xi_w](\xi_u \cdot \xi_v) = [\xi_w] \Big(\xi_u \prod_{\beta \in S(v)} \xi_{s_\beta} \Big) = [\xi_w] \Big(\Big(\prod_{\alpha \in S(u)} \xi_{s_\alpha} \Big) \xi_v \Big) = [\xi_w] \Big(\Big(\prod_{\alpha \in S(u)} \xi_{s_\alpha} \Big) \Big(\prod_{\beta \in S(v)} \xi_{s_\beta} \Big) \Big).$$

Reason: For distinct boolean pairs (u',v') and (u'',v'') such that S(u')=S(u'') and S(v')=S(u'')S(v''), the Schubert expansions of $\xi_{u'} \cdot \xi_{v'}$ and $\xi_{u''} \cdot \xi_{v''}$ share **no** common boolean terms.

Proof of Corollary 2 (Sketch)

It suffices to show the following fact: In type A_m , fix an ordering $S = \{\beta_1, \dots, \beta_n\}$ of a set of simple roots $S \subseteq \Delta$, then there exists **at most one** non-equivariant boolean insertion path $u \stackrel{S}{\leadsto} w$ for any boolean elements $u, w \in W$.

Assume that there are two distinct non-equivariant boolean insertion paths $u=u^{(0)}\stackrel{\rho_1}{\leadsto}$ $u^{(1)} \stackrel{\beta_2}{\leadsto} \cdots \stackrel{\beta_n}{\leadsto} u^{(n)} = w$ and $u = v^{(0)} \stackrel{\beta_1}{\leadsto} v^{(1)} \stackrel{\beta_2}{\leadsto} \cdots \stackrel{\beta_n}{\leadsto} v^{(n)} = w$ which firstly differ at the i_0 -th step.

- Case 1: $B(u^{(i_0)})$ and $B(v^{(i_0)})$ possess reverse directions on some common edges.
- Case 2:

$$u^{(i_0-1)} = v^{(i_0-1)} = \beta_{i_0} \qquad \Rightarrow \begin{cases} 0 \qquad \beta_{i_0} \qquad = u^{(i_0-1)} \\ \beta_{i_0} \qquad = v^{(i_0-1)} \end{cases}$$

 $u^{(i_0)}$ has more vertices than $v^{(i_0)}$ on the left of eta_{i_0} . So do $u^{(i)}$, $v^{(i)}$ and eta_{i_0} whenever $i \geq i_0$.

Fast Algorithms

- Goal: In type A_{13} , let $u=s_4s_3s_8s_{11}s_{12}$, $S=\{2,3,6,7,8,12\}$ and $w=s_7s_6s_5s_4s_2s_3s_9s_8s_{11}s_{13}s_{12}$. Figure out a boolean insertion path $u \stackrel{S}{\leadsto} w$ if exists.
- Runtime: $O(n^2)$.
- B(w): 1 2 3 4 5 6 7 8 9 10 11 12 13 Each insertion should yield a new boolean diagram contained in B(w).
- Initialize: $S = \{2, 3, 6, 7, 8, 12\}$
- Step 1: Insert all the vertices i such that all the possible boolean insertions $B \stackrel{\imath}{\leadsto}$ can only add a unique vertex into B.
- $lack u^{(0)} \stackrel{2}{\leadsto} u^{(1)}$, $S = \{3, 6, 7, 8, 12\}$ $B(u^{(1)}): 1$ 2 3 4 5 6 7 8 9 10 11 12 13
- $\blacksquare u^{(1)} \stackrel{6}{\leadsto} u^{(2)}$, $S = \{3, 7, 8, 12\}$ $B(u^{(2)}): 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \quad 13$
- $\blacksquare u^{(2)} \stackrel{7}{\leadsto} u^{(3)}$, $S = \{3, 8, 12\}$ $B(u^{(3)}): 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \quad 13$
- $\blacksquare u^{(3)} \overset{8}{\leadsto} u^{(4)}$, $S = \{3, 12\}$
- Step 2: Write $S = \{i_1 < \cdots < i_m\}$ ($S = \{3, 12\}$ in our example) and $B(w)\setminus B=\{j_1<\cdots< j_m\}$ ($B(w)\setminus B=\{5,13\}$ in our example). Do $B \stackrel{i_k}{\leadsto} B'$ ($k = 1, \dots, m$) such that the newly added vertex in B' is exactly j_k and that $B' \subseteq B(w)$ if possible.
- $\blacksquare u^{(4)} \stackrel{3}{\leadsto} u^{(5)}$, $S = \{12\}$ $B(u^{(5)}): 1 2 3 4 5 6 7 8 9 10 11 12 13$
- $ullet u^{(5)} \stackrel{12}{\leadsto} u^{(6)}$, S=arnothing $B(u^{(6)}): 1 2 3 4 5 6 7 8 9 10 11 12 13$
- Result: A boolean insertion path

$$u = u^{(0)} \stackrel{2}{\leadsto} u^{(1)} \stackrel{6}{\leadsto} u^{(2)} \stackrel{7}{\leadsto} u^{(3)} \stackrel{8}{\leadsto} u^{(4)} \stackrel{3}{\leadsto} u^{(5)} \stackrel{12}{\leadsto} u^{(6)} = w.$$

References

- (1) David Anderson and William Fulton. *Equivariant cohomology in algebraic* geometry. Cambridge University Press, 2023.
- (2) Yibo Gao, Reuven Hodges, and Alexander Yong. "Classification of Levispherical Schubert varieties". In: Selecta Math. (N.S.) 29.4 (2023), Paper No. 55, 40. DOI: 10.1007/s00029-023-00856-9.
- (3) Yibo Gao, Reuven Hodges, and Alexander Yong. "Levi-spherical Schubert varieties". In: Adv. Math. 439 (2024), Paper No. 109486, 14. DOI: 10.1016/ j.aim.2024.109486.
- (4) Paramasamy Karuppuchamy. "On Schubert varieties". In: Comm. Algebra 41.4 (2013), pp. 1365-1368. DOI: 10.1080/00927872.2011.635620.