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ABSTRACT
We introduce and study several random combinatorial billiard trajectories. Such a system, which
depends on a fixed parameter p ∈ (0, 1), models a beam of light that travels in a Euclidean
space, occasionally randomly reflecting off of a hyperplane in the Coxeter arrangement of an
affine Weyl group with some probability that depends on the side of the hyperplane that it hits.
In one case, we (essentially) recover Lam’s reduced random walk in the limit as p tends to 0.
The investigation of our random billiard trajectories relies on an analysis of new finite Markov
chains that we call stoned exclusion processes. These processes have remarkable stationary dis-
tributions determined by well-studied polynomials such as ASEP polynomials, inhomogeneous
TASEP polynomials, and open boundary ASEP polynomials; in many cases, it was previously
not known how to construct Markov chains with these stationary distributions. Using multi-
line queues, we analyze correlations in the stoned multispecies TASEP, allowing us to determine
limit directions for reduced random billiard trajectories and limit shapes for new random growth
processes for n-core partitions.

RANDOM COMBINATORIAL BILLIARDS

Let W̃ be an irreducible affine Weyl group with associated finite Weyl group W . Let H
W̃

be the
Coxeter arrangement of W̃ .

Start at a generic point in the fundamental alcove. Shine a beam of light in some initial rational
direct η. If the beam travels in a straight line, then it will pass through a sequence of alcove facets
labeled by simple reflections si1 , si2 , si3 , . . .. This sequence is periodic with some period Nη .

Define the reduced random billiard trajectory as follows. Fix p ∈ (0, 1). Whenever the beam hits a
hyperplane in H

W̃
that it has not yet crossed, it passes through with probability p and reflects

with probability 1−p. Whenever the beam hits a hyperplane in H
W̃

that it has crossed, it reflects.
Alternatively, the location of the beam of light after it has hit a hyperplane for the M -th time is
the alcove corresponding to the Demazure product siM ⋆ · · · ⋆ si2 ⋆ si1 .

Theorem. There exists a vector ψp
η such that with probability 1, the reduced random billiard trajectory

travels asymptotically in the direction of a vector in Wψp
η . The vector ψp

η can be computed explicitly in
terms of the stationary distribution of a Markov chain Mη with state space W × Z/NηZ.

TYPE A
Assume W = An−1 = Sn. Let V = {(γ1, . . . , γn) ∈ Rn : γ1 + · · ·+ γn = 0}.
Then H

W̃
= {Hk

i,j : 1 ≤ i < j ≤ n, k ∈ Z}, where Hk
i,j = {(γ1, . . . , γn) ∈ V : γi − γj = k}.

Let δ(n) = (1, 1, . . . , 1,−(n− 1)) ∈ V . Let ei be the i-th standard basis vector in Rn.

Theorem. The vector ψp
δ(n) is a scalar multiple of

∑
1≤i<j≤n

(j − i)(2n− (i+ j − 1)p)

(n− ip)(n− (i− 1)p)(n− jp)(n− (j − 1)p)
(ei − ej).

In the limit p → 0, the reduced random billiard trajectory recovers Lam’s reduced random walk
[8], and the preceding theorem recovers a result of Ayyer and Linusson [1] (originally conjectured
by Lam).

THE STONED MULTISPECIES ASEP
Fix t ∈ [0, 1) and p ∈ (0, 1). Fix λ = (λ1, . . . , λn) ∈ Zn with λ1 ≥ · · · ≥ λn ≥ 0. Let

ft(k, k
′) =


1 if k > k′;

t if k < k′;

0 if k = k′.

Consider a Markov chain with state space Sn × Z/nZ. Represent (µ, j) by placing particles of
species µ1, . . . , µn on the sites of a cycle, placing a gold stone on site j, and placing green stones
on all other sites.

For a transition from state (µ, j), the gold stone swaps with the green stone on site j + 1. The
stones send a signal to the particles on sites j and j + 1, telling them to swap. The signal reaches
the particles with probability p. If the particles receive the signal, they follow their orders with
probability ft(µj , µj+1).
Corteel, Mandelshtam, and Williams [6], building off of work of Cantini, de Gier, and Wheeler
[5], introduced ASEP polynomials, which are polynomials Fµ(x1, . . . , xn; q, t) ∈ C(q, t)[x1, . . . , xn].
They showed that the stationary probability of a state µ in the multispecies ASEP is
Fµ(1, . . . , 1; 1, t) (up to normalization). They also gave a combinatorial formula for ASEP polyno-
mials using multiline queues. ASEP polynomials are closely related to MacDonald polynomials.

Theorem. Let χ = 1−p
1−pt . The stationary probability of (µ, j) in the stoned multispecies ASEP is

Fµ(1, . . . , 1, χ, 1, . . . , 1; 1, t) (up to normalization), where the χ is in position j.

There is a more general version of the stoned multispecies ASEP in which the green stones are
numbered 2, . . . , n and the probability of the signal reaching the particles is some probability pi
depending on the number i of the green stone that swapped with the gold stone. In this setting,
the stationary distribution of (µ, σ) is

Fµ(χσ−1(1), . . . , χσ−1(n); 1, t),

where χ1 = 1 and pj =
χ1−χj

tχ1−χj
for 2 ≤ j ≤ n.

Ayyer, Martin, and Williams [2] recently introduced a different Markov chain whose stationary
distribution is determined by ASEP polynomials evaluated at generic values.

STONED EXCLUSION PROCESSES
Lam and Williams [9] introduced the inhomogeneous TASEP and conjectured that its stationary
distribution is closely related to Schubert polynomials. Cantini [3] showed that the stationary
distribution is governed by particular specializations of inhomogeneous TASEP polynomials. In [7],
I introduce the stoned inhomogeneous TASEP and show that its stationary distribution is given by
inhomogeneous TASEP polynomials evaluated at generic values. In a special case, the stoned
inhomogeneous TASEP can be interpreted as a random combinatorial billiard trajectory in a
torus.
The multispecies open boundary ASEP is a famous interacting particle system on a path graph.
Cantini, Garbali, de Gier, and Wheeler [4] found that its stationary distribution is governed by
particular specializations of open boundary ASEP polynomials, which are closely related to Koorn-
winder polynomials. In [7], I introduce the stoned multispecies open boundary ASEP and show that
its stationary distribution is given by open boundary ASEP polynomials evaluated at generic
values. In a special case, the stoned multispecies open boundary ASEP can be interpreted as a
random combinatorial billiard trajectory in a torus obtained from the affine Weyl group C̃n.

CORE PARTITIONS
Let W = Sn. There is a natural correspondence between alcoves in the fundamental chamber of
the braid arrangement and n-core partitions. Thus, after quotienting by the action of Sn, one can
view the reduced random billiard trajectory as a random growth model for n-core partitions. In
[7], I compute the scaling limit. As n→ ∞, the scaling limits converge to the region{

(x, y) ∈ R2 : y ≤ 0 ≤ x,
√

(1− p)x+
√
−y ≤ (6(1− p))1/4

}
.
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