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Coxeter Groups (Type An)

We denote the ith unit vector in Rn by εi and define for i ∈ [n]:

Simple roots: αi := εi − εi+1
Fundamental weights: ωi := ∑j≤i εj
Generators: reflections along simple roots si := sαi

Coxeter group WAn
: symmetric group Sn+1 generated by S = {s1, ..., sn}

Subword Complexes SC(Q, w) [5]

Subword complex SC(Q, w): For
a word Q = (q1, ..., qn) in S and

w ∈ WAn
, simplicial complex

whose facets are I ⊆ [n], such
that Q[n]\I is a reduced
expression of w.
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Subword complex for Q = (s1, s2, s1, s2, s1), w = s1s2s1.

Brick Polyhedra B(Q, w) [4]

For I facet of SC(Q, w), k ∈ [n]:

root function: r(I, k) := ∏ Q{1,...,k−1}\I(αqk)

root configuration: R(I) = {r(I, k)|1 ≤ k ≤ n}
weight function: w(I, k) := ∏ Q{1,...,k−1}\I(ωqk)

brick vector: b(I) := −∑n
k=1 w(I, k)

upper Bruhat cone: C+(w,Dem(Q)) =
⋂

I facet
cone R(I)

brick polyhedron: B(Q, w) := conv{b(I) | I facet of SC(Q, w)}+ C+(w,Dem(Q))

The brick polyhedron satisfies the local cone property: cone(b(I))(B(Q, w)) = cone R(I).

Compatibility and ν-Trees

northeast path ν: lattice path using north and east steps of unit length

ν-incompatible nodes: lattice points inside Ferrers diagram such that
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ν-tree: maximal set of ν-compatible points

ν-Tamari Lattice [3] [6]

rotation: change node q by q′
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ν-Tamari lattice: ν-trees ordered by rotation

ν-Tamari complex: simplicial complex of pairwise ν-compatible sets of points

The ν-Associahedron [2]

ν-associahedron: polytopal complex dual to complex of interior faces of the ν-Tamari complex
vertices: ν-trees
edge graph: Hasse diagram of the ν-Tamari lattice

ν = EENN ν = EENEEN ν = EENEENEEN

Goal of this presentation

Present a geometric realization of the ν-associahedron.

The ν-Subword Complex SC(Qν, wν) [3]

d(p): lattice distance from p to the top-left corner

labeling: label each lattice point of the Ferrers diagram by the transposition sd(p)+1
Qν: read transpositions: bottom to top, left to right

wν: read transpositions of the complement of ν-tree

ν = ENEEN

s3 s4

s2 s3 s4 s5

s1 s2 s3 s4

Qν = (s3, s2, s1, s4, s3, s2, s4, s3, s5, s4)

s2 s3

s2 s4

wν = s2s3s2s4

ν-subword complex SC(Qν, wν) is isomorphic to the ν-Tamari complex.

ν-Brick Polyhedron B(Qν, wν)

ν-brick polyhedron B(Qν, wν): brick polyhedron of ν-subword complex SC(Qν, wν)

Comparison of the ν-brick polyhedron and ν-associahedron for ν = ENEEN.

Main Therem [Ceballos - Müller, 2025]

The bounded faces of the ν-brick polyhedron B(Qν, wν) give a geometric realization of the ν - as-

sociahedron.

A Projection - Special Case

canonical coordinates y(T): The entry yi(T) is the area (i.e. number of boxes to the left) of the

path Pi(T) connecting the root to the leftmost node of T at level i (increasing from top to

bottom).

Canonical coordinates: y(T) = (3, 2, 3).

special case: No consecutive north steps:

projected points coincide with Ceballos’s canonical realization [1].

Left: Projection of the bounded components, Right: ν-associahedron.
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