Geometric realizations of ν -associahedra via brick polyhedra ### Cesar Ceballos and Matthias Müller ¹TU Graz, Institute of Geometry, Kopernikusgasse 24, 8010 Graz, Austria. # Coxeter Groups (Type A_n) We denote the i^{th} unit vector in \mathbb{R}^n by ϵ_i and define for $i \in [n]$: - Simple roots: $\alpha_i := \epsilon_i \epsilon_{i+1}$ - Fundamental weights: $\omega_i := \sum_{j \leq i} \epsilon_j$ - Generators: reflections along simple roots $s_i := s_{\alpha_i}$ Coxeter group W_{A_n} : symmetric group S_{n+1} generated by $S = \{s_1, ..., s_n\}$ ### Subword Complexes SC(Q, w) [5] Subword complex SC(Q, w): For a word $Q = (q_1, ..., q_n)$ in S and $w \in W_{A_n}$, simplicial complex whose facets are $I \subseteq [n]$, such that $Q_{[n]\setminus I}$ is a reduced expression of w. Subword complex for $Q = (s_1, s_2, s_1, s_2, s_1), w = s_1 s_2 s_1$. # Brick Polyhedra $\mathcal{B}(Q, w)$ [4] For I facet of $\mathcal{SC}(Q, w)$, $k \in [n]$: - root function: $r(I,k) := \prod Q_{\{1,\dots,k-1\}\setminus I}(\alpha_{q_k})$ - root configuration: $R(I) = \{r(I,k) | 1 \le k \le n\}$ - weight function: $\forall (I,k) := \prod Q_{\{1,\dots,k-1\}\setminus I}(\omega_{q_k})$ - brick vector: $b(I) := -\sum_{k=1}^{n} w(I,k)$ - upper Bruhat cone: $C^+(w, Dem(Q)) = \bigcap_{I \text{ facet}} cone R(I)$ - brick polyhedron: $\mathcal{B}(Q,w) := \text{conv}\{b(I) \mid \text{I facet of } \mathcal{SC}(Q,w)\} + \mathcal{C}^+(w,\text{Dem}(Q))$ - The brick polyhedron satisfies the local cone property: $cone^{(b(I))}(\mathcal{B}(Q,w)) = cone R(I)$. ### Compatibility and ν -Trees - northeast path ν : lattice path using north and east steps of unit length - ullet u-incompatible nodes: lattice points inside Ferrers diagram such that Subword complex SC(Q, w): For a word $Q = (q_1, ..., q_n)$ in S and $w \in W_{A_n}$, simplicial complex whose facets are $I \subseteq [n]$, such that $Q_{[n]\setminus I}$ is a reduced expression of w. • ν -tree: maximal set of ν -compatible points # ν -Tamari Lattice [3] [6] • rotation: change node q by q' - ν -Tamari lattice: ν -trees ordered by rotation - ν -Tamari complex: simplicial complex of pairwise ν -compatible sets of points # The ν -Associahedron [2] - ν -associahedron: polytopal complex dual to complex of interior faces of the ν -Tamari complex - vertices: ν-trees - ullet edge graph: Hasse diagram of the u-Tamari lattice # **Goal of this presentation** Present a geometric realization of the ν -associahedron. ### The ν -Subword Complex $\mathcal{SC}(Q_{\nu}, w_{\nu})$ [3] - d(p): lattice distance from p to the top-left corner - labeling: label each lattice point of the Ferrers diagram by the transposition $s_{d(p)+1}$ - Q_{ν} : read transpositions: bottom to top, left to right - w_{ν} : read transpositions of the complement of ν -tree • ν -subword complex $\mathcal{SC}(Q_{\nu}, w_{\nu})$ is isomorphic to the ν -Tamari complex. ### ν -Brick Polyhedron $\mathcal{B}(Q_{\nu}, w_{\nu})$ • ν -brick polyhedron $\mathcal{B}(Q_{\nu}, w_{\nu})$: brick polyhedron of ν -subword complex $\mathcal{SC}(Q_{\nu}, w_{\nu})$ Comparison of the ν -brick polyhedron and ν -associahedron for $\nu = ENEEN$. # Main Therem [Ceballos - Müller, 2025] The bounded faces of the ν -brick polyhedron $\mathcal{B}(Q_{\nu}, w_{\nu})$ give a geometric realization of the ν - associahedron. # A Projection - Special Case • canonical coordinates y(T): The entry $y_i(T)$ is the area (i.e. number of boxes to the left) of the path $P_i(T)$ connecting the root to the leftmost node of T at level i (increasing from top to bottom). • special case: No consecutive north steps: projected points coincide with Ceballos's canonical realization [1]. Left: Projection of the bounded components, Right: u-associahedron. # References - [1] Ceballos. A canonical realization of the alt ν -associahedron. arXiv:2401.17204v1, 2024. - [2] Ceballos, Padrol, and Sarmiento. Geometry of ν -Tamari lattices in types A and B. Trans. Amer. Math. Soc., 371(4):2575–2622, 2019. - [3] Ceballos, Padrol, and Sarmiento. The ν -Tamari lattice via ν -trees, ν -bracket vectors, and subword complexes. *Electron. J. Combin.*, 27(1): Paper No. 1.14, 31, 2020. - [4] Jahn and Stump. Bruhat intervals, subword complexes and brick polyhedra for finite Coxeter groups. *Math. Z.*, 304(2):Paper No. 24, 32, 2023. - [5] Knutson and Miller. Subword complexes in Coxeter groups. Adv. Math., 184(1):161–176, 2004. - [6] Préville-Ratelle and Viennot. The enumeration of generalized Tamari intervals. *Trans. Amer. Math. Soc.*, 369(7):5219–5239, 2017.