# Differential transcendence and walks on self-similar graphs





#### Context

We can sort series in combinatorics by the equations they satisfy. They might be rational, algebraic, D-finite, differentially algebraic, or none of these. Combinatorial complexity of walks on graphs is often mirrored by these categories.

### Random walks on infinite graphs

For a connected graph X, define for each directed edge (x,y) the transition probability  $\mathbb{P}(x,y)=\frac{1}{\deg(x)}$ . The probability of a walk is the product of each edge probability. The **Green's function** is a sum over walks  $\omega$  from x to y:

$$G(x,y|z) := \sum_{\omega: x \to y} \mathbb{P}(\omega) z^{|\omega|}$$

The graphs here will have a fixed origin vertex o. We focus on G(z) := G(o, o|z). For which graphs is G(z) algebraic? Can we combinatorially characterize them?

### Symmetrically self-similar graphs

Symmetrically self-similar graphs are a well studied class of fractal graphs, constructed as follows:

- 1 Start with a **cell graph**  $C_1$ . It has certain symmetry properties, and is built by connecting some complete graphs of the same order,  $\theta$ , the **branching number**.
- 2 Next, iterate a **blowing** operation which creates  $C_n$  by replacing each clique in  $C_{n-1}$  by  $C_1$ .
- 3 The limit,  $C_{\infty}$ , is a symmetrically self-similar graph with a unique origin vertex o, the image of  $v_1$  in  $C_1$ .





(a) The iterative process giving the Sierpiński triangle.  $\theta=3$ 

(b) The Sierpiński triangle  $C_{\infty}$ 



(a) A cell graph  $C_1$  with  $\theta = 2$ 

(b) The associated symmetrically self-similar graph  $C_{\infty}$ 

For this graph  $C_{\infty}$ ,

$$G_{C_{\infty}}(z) = 1 + \frac{z^2}{3} + \frac{2z^4}{9} + \frac{5z^6}{27} + O(z^8)$$

**Remark:** Gluing multiple copies of  $C_{\infty}$  at the origin is also a symmetrically self-similar graph, with the same main Green's function.

Long version: https://arxiv.org/abs/2411.19316

Yakob Kahane\* and Marni Mishna†

\*Ecole Polytechnique \*UQAM

†Simon Fraser University



### A star graph

A path cell graph leads to a star graph. Star graphs are the only known family of symmetrically self-similar graphs with an algebraic Green's function.





(a) A path  $(\theta = 2)$ 

(b) We join multiple copies of the limit (an infinite path) at the origin

The Green's function is algebraic:

$$G(z) = \sum_{n} \frac{\binom{2n}{n}}{2^{2n}} z^{2n} = \frac{1}{\sqrt{1-z^2}}$$

#### Our main resul

THEOREM. Let X be a symmetrically self-similar graph with bounded geometry, origin o, and branching number  $\theta=2$ . **Either** 

The graph is a  $\mathbf{star}$  consisting of finitely many one-sided lines that coincide at o.

or

The Green's function G(o, o|z) of X is **differentially transcendental** over  $\mathbb{C}(z)$ .

# **Proof Ingredients**

**Grabiner and Woess:**. Green's functions of symmetrically self-similar graphs satisfy functional equation

G(z) = f(z)G(d(z)).

by Di Vizio et al.: A solution to the functional equation is either algebraic, or it is differentially transcendental. If it is algebraic, there is an N so  $G^N = P(z)/Q(z)$ .

by Grabiner and Woess:. It G is algebraic the singular expansion around the dominant singularity is  $(1-z)^{\eta}$ , and the singularities are limited to  $(-\infty, -1)$ .

**Key step:** If G is algebraic,  $\eta \leq \frac{1}{2}$  with equality if and only if X is the star graph

## Next steps

Conjecture: The result is also true for all  $\theta > 2$ .

Infinite cell graphs Some self-similar graphs generated from infinite cell graphs are Cayley graphs with algebraic Green's function. Is there a wider theory?

Conjecture Teufl conjectured that the Julia set of the poles of the Green's function of self-similar graphs is a Cantor set, except for star graphs. We can partially establish this result as a consequence of our Main Result.

### **Definitions**

A cell graph  $C_1$  with branching number  $\theta$ , is finite and made from  $\mu$  complete graphs and have  $\theta$  extremal points. It must have certain automorphisms switching those extremal points.



Figure: A cell graph with  $\theta = 4$ . The 4 extremal vertices are in red.

- A series in C[[z]] is differentially algebraic over C(z) if it
  satisfies a polynomial differential equation over C(z). Otherwise, it is
  differentially transcendental.
- f(z): generating function of probabilities of walks on the cell starting and ending at v<sub>1</sub>, never touching v<sub>2</sub>,..., v<sub>n</sub>.
- d(z): generating function of probabilities of walks on the cell starting at v<sub>1</sub> ending at one of v<sub>2</sub>,..., v<sub>θ</sub>.
- $\tau = d'(1)$  is the expected number of steps for a random walk starting at  $v_1$  for reaching  $v_2, \ldots, v_{\theta}$
- $\eta = \frac{\log \mu}{\log \tau} 1$  is the critical exponent of the asymptotics of the Green's function at the dominant singularity.

#### References

Lucia Di Vizio, Gwladys Fernandes, and Marni Mishna

Inhomogeneous order 1 iterative functional equations with applications to combinatorics. arXiv preprint arXiv:2309.07680, 2023.

Peter J. Grabner and Wolfgang Woess.

Functional iterations and periodic oscillations for simple random walk on the Sierpiński graph. Stochastic Processes and their Applications, 69(1):127–138, 1997. ISSN 0304-149

ISSN 0304-4149. doi: 10.1016/S0304-4149(97)00033-1

URL https://doi.org/10.1016/S0304-4149(97)00033-1.

Bernhard Krö

Green functions on self-similar graphs and bounds for the spectrum of the Laplacian. Université de Grenoble. Annales de l'Institut Fourier, 52(6):1875–1900, 2002. ISSN 0373-0956.1777-5310.

URL http://aif.cedram.org/item?id=AIF\_2002\_\_52\_6\_1875\_0.

# Acknowledgments

We are grateful for project funding from NSERC of Canada Discovery Grant "Transcendence and Combinatorics".