



Lusztig Positive

ON TWO NOTIONS OF TOTAL POSITIVITY FOR GENERALIZED PARTIAL FLAG VARIETIES OF CLASSICAL LIE TYPES

Grant Barkley, Jonathan Boretsky, Chris Eur, Jiyang Gao

Laboratoire d'algèbre, de combinatoire et d'informatique mathématique

Outline

- Bloch and Karp [BK] showed that two natural notions of nonnegativity coincide for many partial flag varieties of type A.
- Type B or C partial flag varieties can be realized as a subset of type A partial flag varieties satisfying some extra conditions.
- ullet There are two analogous notions of nonnegativity for type B and Cpartial flag varieties.
- Key Idea: For each definition of nonnegativity, we show that the nonnegative part of the type B or C flag variety lies within the corresponding nonnegative type A flag variety.
- We conclude that in many cases, the two notions coincide.

Flag Varieties

- (A) The rank $\mathbf{r} = (r_1, \dots, r_k)$ Type A Flag Variety in \mathbb{R}^n is:
 - $\operatorname{Fl}_{\mathbf{r};n} = \{L_1 \subset \cdots \subset L_k \subset \mathbb{R}^n \mid \dim(L_i) = r_i \text{ for } i \in [k]\}.$
- (B) Let E^B be the $(2n+1) \times (2n+1)$ symmetric matrix $\begin{pmatrix} & & -1 \\ & & & \end{pmatrix}$.

The **Type B Flag Variety** of rank r is:

$$SOFl_{\mathbf{r};2n+1} = \{(L_1, \dots, L_k) \in Fl_{\mathbf{r};n} \mid vE^B w^t = 0 \quad \forall v, w \in L_k\}.$$

(C) Let E^C be the $(2n) \times (2n)$ skew-symmetric matrix $\begin{pmatrix} & & -1 \\ & & & \\ & & 1 \end{pmatrix}$.

The **Type C Flag Variety** of rank r is:

$$SpFl_{\mathbf{r};2n} = \{(L_1, \dots, L_k) \in Fl_{\mathbf{r};n} \mid vE^C w^t = 0 \ \forall \ v, w \in L_k\}.$$

Notation: We will use $\bigstar \operatorname{Fl}_{\mathbf{r};n}$ when we wish to denote any of $\operatorname{Fl}_{\mathbf{r};n}$, $\operatorname{SOFl}_{\mathbf{r};2n+1}$, or $SpFl_{\mathbf{r};2n}$.

Type A result

Our goal is a type B and C analogue of:

Theorem ([BK]). *The following are equivalent:*

1. The Plücker positive and Lusztig positive type A flag varieties coincide:

$$\mathrm{Fl}_{\mathbf{r};n}^{>0} = \mathrm{Fl}_{\mathbf{r};n}^{\Delta>0}$$

2. The Plücker non-negative and Lusztig non-negative type A flag varieties coincide:

$$\mathrm{Fl}^{\geq 0}_{\mathbf{r}:n} = \mathrm{Fl}^{\Delta \geq 0}_{\mathbf{r}:n}$$

3. The rank vector consists of consecutive integers:

$$\mathbf{r} = (a, a+1, \dots, b)$$

Main result

Theorem ([BBEG]). Let $n \geq 3$. Then the following are equivalent:

1.
$$SOFl_{\mathbf{r}:2n+1}^{>0} = SOFl_{\mathbf{r}:2n+1}^{\Delta>0}$$

2.
$$SOFl_{\mathbf{r};2n+1}^{\geq 0} = SOFl_{\mathbf{r};2n+1}^{\Delta \geq 0}$$

3.
$$\operatorname{SpFl}_{\mathbf{r};2n}^{>0} = \operatorname{SpFl}_{\mathbf{r};2n}^{\Delta>0}$$

4.
$$\operatorname{SpFl}_{\mathbf{r};2n}^{\geq 0} = \operatorname{SpFl}_{\mathbf{r};2n}^{\Delta \geq 0}$$

5.
$$\mathbf{r} = (a, a+1, \dots, n)$$

$$1 2 n-2 n-1 n$$

For n = 2, items 1 and 2 are no longer equivalent to the rest.

Plücker Nonegativity

We represent flags in $\bigstar Fl_{\mathbf{r},n}$ by $n \times n$ matrices (non-unquiely).

$$M \longleftrightarrow F = (L_1 \subset \cdots \subset L_k)$$

$$L_i = \operatorname{rowspan}(\operatorname{first} r_i \operatorname{rows} \operatorname{of} M)$$

The Plücker coordinates of F are certain minors of M. Specifically, for each $i \in [k]$, take all the $r_i \times r_i$ minors of M in rows $1, \ldots, r_i$.

- The Plücker positive flag variety is:
 - $\bigstar \operatorname{Fl}_{\mathbf{r};n}^{\Delta>0} = \{ F \in \bigstar \operatorname{Fl}_{\mathbf{r};n} \mid \text{All Plücker coordinates are } > 0 \}.$
- The Plücker nonnegative flag variety is:
 - $\bigstar \operatorname{Fl}_{\mathbf{r},n}^{\Delta \geq 0} = \{ F \in \bigstar \operatorname{Fl}_{\mathbf{r},n} \mid \text{All Plücker coordinates are } \geq 0 \}.$

Lusztig nonnegativity

We describe a parameterization of the Lusztig positive part of $\bigstar Fl_{r,n}$ using the following matrices, which come from a choice of **Chevalley generators** for the Lie algebra of the appropriate type. Making this choice corresponds to choosing a pinning of the linear algebraic group of the appropriate type.

Let $E_{i,j}$ be the matrix with a 1 in row i, column j and zeros elsewhere.

(A)
$$y_i^A(t) = I + tE_{i,i+1} \text{ for } i \in [n-1]$$

(B)
$$y_i^B(t) = I + tE_{i,i+1} + tE_{2n+1-i,2n+2-i}$$
 for $i \in [n-1]$. $y_n^B(t) = I + \sqrt{2}tE_{n,n+1} + \sqrt{2}tE_{n+1,n+2} + t^2E_{n,n+2}$

(C)
$$y_i^C(t) = I + tE_{i,i+1} + tE_{2n-i,2n-i+1}$$
 for $i \in [n-1]$. $y_n^C(t) = I + tE_{n,n+1}$

For example, when
$$n=2$$
, $y_1^B(t)=\begin{pmatrix} \frac{1}{0} & t & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & t \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$ and $y_2^C(t)=\begin{pmatrix} \frac{1}{0} & 0 & 0 & 0 \\ 0 & 1 & t & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$.

The following equations hold:

$$y_i^B(t) = y_i^A(t)y_{2n+1-i}^{\bar{A}}(t), i \in [n-1] \qquad y_i^C(t) = y_i^A(t)y_{2n-i}^A(t), i \in [n-1]$$

$$y_n^B(t) = y_n^A(\frac{t}{\sqrt{2}})y_{n+1}^A(\sqrt{2}t)y_n^A(\frac{t}{\sqrt{2}}) \qquad y_n^C(t) = y_n^A(t)$$

$$y_n^C(t) = y_n^A(t)$$

Recall that \bigstar denotes type A, B, or C. Let i be an expression for the longest word in $(W^*)^J$, where W^* is the type \bigstar Weyl group and J is the complement of r in the roots of the appropriate type. [Alternatively, one may take i to be any sufficiently long random sequence in [n-1] (type A) or in [n] (types B or C)].

Let $\mathbf{i} = (i_1, \dots, i_N)$. The Lusztig positive flag variety, due to Lusztig [Lus], is:

$$\star \operatorname{Fl}_{\mathbf{r};n}^{>0} = \left\{ \prod_{j=1}^{N} y_{i_j}(t_j) \mid \forall j \in [N], \ t_j > 0 \right\}.$$

The Lusztig nonnegative flag variety is:

$$\bigstar \operatorname{Fl}_{\mathbf{r};n}^{\geq 0} = \overline{\bigstar \operatorname{Fl}_{\mathbf{r};n}^{> 0}}.$$

Bibliography

[BBEG] G. Barkley, J. Boretsky, C. Eur, and J. Gao. "On two notions of total positivity for generalized partial flag varieties of classical Lie types". 2024. arXiv:2410.11804

[BK] A. M. Bloch and S. N. Karp. "On two notions of total positivity for partial flag varieties". Adv. Math. 414 (2023)

[Lus] G. Lusztig. "Total positivity in partial flag manifolds". Represent. Theory 2 (1998), pp. 70–78.

Example

Let n=2 and $\mathbf{r}=(1,2)$. We give an example of a flag in $\mathrm{SpFl}_{(1,2):2}^{>0}=\mathrm{SpFl}_{(1,2):2}^{\Delta>0}$. We start with an expression for the longest word in the type C Weyl group, $s_1s_2s_1s_2$. For positive parameters a, b, c, d, construct a Lusztig positive flag represented by:

$$y_1^C(a)y_2^C(b)y_1^C(c)y_2^C(d) = \begin{pmatrix} 1 & a & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & a \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & b & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & c & 0 & 0 \\ 0 & 1 & b & 0 \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a+c & ab+ad+cd & abc \\ 0 & 1 & b+d & bc \\ 0 & 0 & 1 & a+c \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

We can observe that this matrix represents a flag in $SpFl_{(1,2);3}$. For instance, applying the form E^C to the first 2 rows gives

$$(1)(bc) - (a+c)(b+d) + (ab+ad+cd)(1) - (abc)(0) = 0.$$

Observe that this is also Plücker positive. For instance,

$$P_2 = a + c$$
, $P_4 = abc$, $P_{23} = bc$, $P_{24} = bc^2$, and $P_{34} = bc^2d$.

Conversely, observe that for matrices of this form,

$$a=rac{P_4}{P_{23}}$$
, $b=rac{(P_{23})^2}{P_{24}}$, $c=rac{P_{24}}{P_{23}}$, and $d=rac{P_{34}}{P_{24}}$.

Moreover, one can show that the Plückers in these expressions uniquely determine all others. Thus, Plücker positivity implies Lusztig positivity.