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Outline
• Bloch and Karp [BK] showed that

two natural notions of nonnegativ-
ity coincide for many partial flag
varieties of type A.

• Type B or C partial flag varieties
can be realized as a subset of type
A partial flag varieties satisfying
some extra conditions.

Flag Variety

Plücker Positive
Flag Variety

Lusztig Positive

• There are two analogous notions of nonnegativity for type B and C
partial flag varieties.

• Key Idea: For each definition of nonnegativity, we show that the non-
negative part of the type B or C flag variety lies within the corre-
sponding nonnegative type A flag variety.

• We conclude that in many cases, the two notions coincide.

Flag Varieties

(A) The rank r = (r1, . . . , rk) Type A Flag Variety in Rn is:

Flr;n = {L1 ⊂ · · · ⊂ Lk ⊂ Rn | dim(Li) = ri for i ∈ [k]} .

(B) Let EB be the (2n+1)× (2n+1) symmetric matrix
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The Type B Flag Variety of rank r is:

SOFlr;2n+1 =
{
(L1, . . . , Lk) ∈ Flr;n | vEBwt = 0 ∀ v, w ∈ Lk

}
.

(C) Let EC be the (2n)× (2n) skew-symmetric matrix
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The Type C Flag Variety of rank r is:

SpFlr;2n =
{
(L1, . . . , Lk) ∈ Flr;n | vECwt = 0 ∀ v, w ∈ Lk

}
.

Notation: We will use ⋆Flr;n when we wish to denote any of Flr;n, SOFlr;2n+1,
or SpFlr;2n.

Type A result
Our goal is a type B and C analogue of:

Theorem ([BK]). The following are equivalent:
1. The Plücker positive and Lusztig positive type A flag varieties coincide:

Fl>0
r;n = Fl∆>0

r;n

2. The Plücker non-negative and Lusztig non-negative type A flag varieties coincide:

Fl≥0r;n = Fl∆≥0r;n

3. The rank vector consists of consecutive integers:

r = (a, a + 1, . . . , b)

Main result

Theorem ([BBEG]). Let n ≥ 3. Then the following are equivalent:
1. SOFl>0

r;2n+1 = SOFl∆>0
r;2n+1

3. SpFl>0
r;2n = SpFl∆>0

r;2n

5. r = (a, a + 1, . . . , n)

2. SOFl≥0r;2n+1 = SOFl∆≥0r;2n+1

4. SpFl≥0r;2n = SpFl∆≥0r;2n

For n = 2, items 1 and 2 are no longer equivalent to the rest.

Plücker Nonegativity
We represent flags in ⋆Flr;n by n× n matrices (non-unqiuely).

M ←→
F = (L1 ⊂ · · · ⊂ Lk)

Li = rowspan(first ri rows of M)

The Plücker coordinates of F are certain minors of M . Specifically, for each
i ∈ [k], take all the ri × ri minors of M in rows 1, . . . , ri.

• The Plücker positive flag variety is:
⋆Fl∆>0

r;n =
{
F ∈⋆Flr;n | All Plücker coordinates are > 0

}
.

• The Plücker nonnegative flag variety is:
⋆Fl∆≥0r;n =

{
F ∈⋆Flr;n | All Plücker coordinates are ≥ 0

}
.

Lusztig nonnegativity
We describe a parameterization of the Lusztig positive part of ⋆Flr;n using the
following matrices, which come from a choice of Chevalley generators for the Lie
algebra of the appropriate type. Making this choice corresponds to choosing a
pinning of the linear algebraic group of the appropriate type.
Let Ei,j be the matrix with a 1 in row i, column j and zeros elsewhere.
(A) yAi (t) = I + tEi,i+1 for i ∈ [n− 1]

(B) yBi (t) = I + tEi,i+1 + tE2n+1−i,2n+2−i for i ∈ [n− 1].
yBn (t) = I +

√
2tEn,n+1 +

√
2tEn+1,n+2 + t2En,n+2

(C) yCi (t) = I + tEi,i+1 + tE2n−i,2n−i+1 for i ∈ [n− 1].
yCn (t) = I + tEn,n+1

For example, when n = 2, yB1 (t) =
( 1 t 0 0 0

0 1 0 0 0
0 0 1 0 0
0 0 0 1 t
0 0 0 0 1

)
and yC2 (t) =

(
1 0 0 0
0 1 t 0
0 0 1 0
0 0 0 1

)
.

The following equations hold:
yBi (t) = yAi (t)y

A
2n+1−i(t), i ∈ [n− 1] yCi (t) = yAi (t)y

A
2n−i(t), i ∈ [n− 1]

yBn (t) = yAn (
t√
2
)yAn+1(

√
2t)yAn (

t√
2
) yCn (t) = yAn (t)

Recall that ⋆ denotes type A, B, or C. Let i be an expression for the longest word
in (W⋆)J , where W⋆ is the type ⋆ Weyl group and J is the complement of r in
the roots of the appropriate type. [Alternatively, one may take i to be any sufficiently
long random sequence in [n− 1] (type A) or in [n] (types B or C)].

Let i = (i1, . . . , iN). The Lusztig positive flag variety, due to Lusztig [Lus], is:

⋆Fl>0
r;n =


N∏
j=1

yij(tj) | ∀ j ∈ [N ], tj > 0

 .

The Lusztig nonnegative flag variety is:

⋆Fl≥0r;n = ⋆Fl>0
r;n.
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Example

Let n = 2 and r = (1, 2). We give an example of a flag in SpFl>0
(1,2);2 = SpFl∆>0

(1,2);2. We
start with an expression for the longest word in the type C Weyl group, s1s2s1s2. For
positive parameters a, b, c, d, construct a Lusztig positive flag represented by:

yC1 (a)y
C
2 (b)y

C
1 (c)y

C
2 (d) =

(
1 a 0 0
0 1 0 0
0 0 1 a
0 0 0 1

)(
1 0 0 0
0 1 b 0
0 0 1 0
0 0 0 1

)(
1 c 0 0
0 1 0 0
0 0 1 c
0 0 0 1

)(
1 0 0 0
0 1 d 0
0 0 1 0
0 0 0 1

)
=

(
1 a+c ab+ad+cd abc
0 1 b+d bc
0 0 1 a+c
0 0 0 1

)
We can observe that this matrix represents a flag in SpF l(1,2);3. For in-
stance, applying the form EC to the first 2 rows gives

(1)(bc)− (a + c)(b + d) + (ab + ad + cd)(1)− (abc)(0) = 0.

Observe that this is also Plücker positive. For instance,

P2 = a + c, P4 = abc, P23 = bc, P24 = bc2, and P34 = bc2d.

Conversely, observe that for matrices of this form,

a =
P4

P23
, b =

(P23)
2

P24
, c =

P24

P23
, and d =

P34

P24
.

Moreover, one can show that the Plückers in these expressions uniquely
determine all others. Thus, Plücker positivity implies Lusztig positivity.


