The monopole-dimer model on high-dimensional cylindrical, toroidal, Möbius and Klein grids

Anita Arora*

Thanks to Prof. Arvind Ayyer for engaging in valuable and insightful discussions and Prime Minister's Research Fellowship (PM-MHRD_19_17579) Scheme for providing funding support.

Objective

To generalize the monopole-dimer model for high-dimensional grid graphs with different boundary conditions.

Loop-vertex Model [1]

The loop-vertex model on the (edge- and vertex-weighted) graph G with an orientation \mathcal{O} is the collection \mathcal{L} of configurations consisting directed even loops, doubled edges and some isolated vertices with the weight of each configuration C defined as:

$$w(C) = \prod_{\ell = loop \ in \ C} w(\ell) \prod_{\substack{v \ an \ isolated \ vertex \ in \ C}} x(v)$$
 where $w(\ell) = -\prod_{i=1}^{2m} sgn(v_i, v_{i+1}) a_{v_i, v_{i+1}}$ for $\ell = (v_1, v_2, ..., v_{2m}, v_1)$.

Figure: Two matchings overlapping to form a loop-vertex configuration.

The partition function of the loop-vertex Model on (G, \mathcal{O}) is defined as

$$\mathscr{Z}_{G,\mathscr{O}} := \sum_{C \in \mathscr{L}} w(C).$$

Partition function is a determinant [1]

The partition function of the loop-vertex model on (G, \mathcal{O}) is

$$\mathscr{Z}_{\mathcal{G},\mathscr{O}} = \det\left(\mathscr{K}_{\mathcal{G},\mathscr{O}}\right),$$

where $\mathscr{K}_{G,\mathscr{O}}$ is a generalised adjacency matrix of (G,\mathscr{O}) defined as:

$$\mathscr{K}_{G,\mathscr{O}}(v,v') = egin{cases} x(v) & \text{if } v = v', \ a_{v,v'} & \text{if } v o v' \, \text{in} \, \mathscr{O}, \ -a_{v,v'} & \text{if } v' o v \, \text{in} \, \mathscr{O}, \ 0 & \text{if } (v,v') \notin E(G). \end{cases}$$

Oriented Cartesian product

The *oriented Cartesian product* of naturally labeled oriented graphs (G_1, \mathcal{O}_1) , $\ldots, (G_k, \mathcal{O}_k)$ is the graph $G_1 \square \cdots \square G_k$ with orientation \mathcal{O} given as follows. For each $i \in [k]$, if $u_i \to u_i'$ in \mathcal{O}_i , then \mathcal{O} gives orientation $(u_1, \ldots, u_i, \ldots, u_k) \to (u_1, \ldots, u_i', \ldots, u_k)$ if $u_{i+1} + u_{i+2} + \cdots + u_k + (k-i) \equiv 0$ (mod 2) and $(u_1, \ldots, u_i', \ldots, u_k) \to (u_1, \ldots, u_i, \ldots, u_k)$ otherwise.

(Extended) Monopole-dimer model [2]

In the case of oriented Cartesian product of plane graphs each with a Pfaffian orientation, the loop-vertex model is known as the *monopole-dimer model* and the weight of a loop $\ell = (v_0, v_1, \dots, v_{2k-1}, v_{2k} = v_0)$ can be written *independent of the orientation* [2, Theorem 3.8]. In particular, for a plane graph, it can be expressed [1] as

$$w(\ell) = (-1)^{ ext{number of vertices enclosed by } \ell} \prod_{j=0}^{2k-1} a_{v_j,v_{j+1}}.$$

Consequetly, $\det \mathscr{K}_G$ becomes independent of the k Pfaffian orientations.

High-dimensional cylindrical grid

An ℓ -cylindrical grid denoted $Q_{n_1,...,n_d}^{\ell}$ is the graph $C_{n_1} \square \cdots \square C_{n_\ell}$ $\square P_{n_{\ell+1}} \square \cdots \square P_{n_d}$. For $\ell=1$ ($\ell=d$), we call it a cylindrical (toroidal) grid and use the notation $Q_{n_1,...,n_d}^{\mathsf{Cyl}}$ ($Q_{n_1,...,n_d}^{\mathsf{Tor}}$).

Figure: The boustrophedon labelling on the cylindrical grid $Q_{4,2,2}^{\text{Cyl}}$.

Monopole-dimer model on cylindrical grid

Let G be the ℓ -cylindrical grid graph $Q^{\ell}_{2m_1,\ldots,2m_d}$ with boustrophedon labelling in d dimension. Let (G,\mathcal{O}) be obtained from G by orienting the edges from a lower-labelled vertex to a higher-labelled vertex. Let the vertex weights be x for all vertices of G, and edge weights be a_1,\ldots,a_d for the edges along the different coordinate axes. Then the partition function of the monopole-dimer model on G is given by

$$\mathscr{Z}_{2m_1,...,2m_d}^{\mathsf{Mix}} = \prod_{i_1=1}^{m_1} \cdots \prod_{i_d=1}^{m_d} \left(x^2 + \sum_{s=1}^{\ell} 4a_s^2 \sin^2 \frac{(2i_s-1)\pi}{2m_s} + \sum_{t=\ell+1}^{d} 4a_t^2 \cos^2 \frac{i_t\pi}{2m_t+1} \right)^{2^{d-1}}.$$

High-dimensional Möbius grid

Let $Q_{n_1,...,n_d}$ be the d-dimensional grid graph, add an edge between the vertices $(1,k_2,...,k_d)$ and $(n_1,n_2-k_2+1,...,n_d-k_d+1)$ for all $1 \le k_i \le n_i$ $(2 \le i \le d)$ to obtain the d-dimensional $M\ddot{o}bius$ grid graph and denoted as $Q_{n_1,...,n_d}^{M\ddot{o}b}$. We call these edges as dashed edges and the remaining as solid edges. Orient the solid edges from lower-labelled vertex to higher-labelled vertex, orient the dashed edge at 1 outward and the remaining dashed edges such that each two-dimensional square satisfies the clockwise-odd property.

Figure: The three-dimensional Möbius grid graph $Q_{4,2,2}^{\text{M\"ob}}$.

Monopole-dimer model on Möbius grid

We define the *monopole-dimer model* on the *d*-dimensional Möbius grid graph G as the loop-vertex model on G with the above orientation G. The partition function of the monopole-dimer model is then the partition function of the loop-vertex model.

Theorem

Let G be the three-dimensional Möbius grid graph $Q_{2m_1,2m_2,2m_3}^{M\"ob}$ with boustrophedon labelling. Let the vertex weights be x for all vertices of G, and edge weights be a_1, a_2 and a_3 for the edges along the x-,y- and z- coordinate axes respectively. Then the partition function of the monopole-dimer model on G is given by

$$\mathscr{Z}_{2m_1,2m_2,2m_3}^{M\ddot{o}b} = \prod_{i_1=1}^{m_1} \prod_{i_2=1}^{m_2} \prod_{i_3=1}^{m_3} \left(x^2 + 4a_1^2 \sin^2 \frac{(4i_1-1)\pi}{4m_1} + 4a_2^2 \cos^2 \frac{i_2\pi}{2m_2+1} + 4a_3^2 \cos^2 \frac{i_3\pi}{2m_3+1} \right)^4.$$

Relation between cylindrical and Möbius grid

Let $\mathscr{Z}_{4n_1,2n_2,2n_3}^{\mathsf{Cyl}}$ and $\mathscr{Z}_{2n_1,2n_2,2n_3}^{\mathsf{M\"ob}}$ be the partition function of the monopole-dimer model on the three-dimensional M\"obius grid $Q_{4n_1,2n_2,2n_3}^{\mathsf{M\"ob}}$ and cylindrical grid $Q_{2n_1,2n_2,2n_3}^{\mathsf{Cyl}}$ with boustrophedon labelling, respectively. Then

$$\mathscr{Z}_{4n_1,2n_2,2n_3}^{\mathsf{Cyl}} = \left(\mathscr{Z}_{2n_1,2n_2,2n_3}^{\mathsf{M\"ob}}\right)^2.$$

The three-dimensional Klein grid graph can be defined along the similar lines and the partition function of the monopole-dimer model on the Klein grid is given by

$$\mathscr{Z}_{2m_1,2m_2,2m_3}^{\mathsf{Klein}} = \prod_{i_1=1}^{m_1} \prod_{i_2=1}^{m_2} \prod_{i_3=1}^{m_3} \left(x^2 + 4a_1^2 \sin^2 \frac{(4i_1-1)\pi}{4m_1} + 4a_2^2 \sin^2 \frac{(2i_2-1)\pi}{2m_2} + 4a_3^2 \sin^2 \frac{(2i_3-1)\pi}{2m_3} \right)^4.$$

The product formula for Möbius and Klein does not generalise to higher dimensions.

References

- [1] Arvind Ayyer. A statistical model of current loops and magnetic monopoles. *Math. Phys. Anal. Geom.*, 18(1):Art. 16, 19, 2015.
- Anita Arora and Arvind Ayyer. The monopole-dimer model on cartesian products of plane graphs. *Combinatorial Theory*, 3(3), 2023.
- Anita Arora. The monopole-dimer model on high-dimensional cylindrical, toroidal, Möbius and Klein grids. *arXiv:2406.05750*, 2024.
- [4] W.T. Lu and F.Y. Wu. Dimer statistics on the möbius strip and the klein bottle. *Physics Letters A*, 259(2):108–114, 1999.