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To generalize the monopole-dimer model for high-dimensional grid
graphs with different boundary conditions.

Loop-vertex Model [1]

The loop-vertex model on the (edge- and vertex-weighted) graph G with an ori-
entation & is the collection .Z of configurations consisting directed even loops,
doubled edges and some isolated vertices with the weight of each configuration

C defined as:
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Figure: Two matchings overlapping to form a loop-vertex configuration.

The partition function of the loop-vertex Model on (G, &) is defined as

260 = Z w(C).
Ce”

Partition function is a determinant [1]

The partition function of the loop-vertex model on (G, 0) is
ff(;ﬁ — det (Q%/Gﬁ),

where 7 ;5 is a generalised adjacency matrix of (G, &) defined as:

x(v) ifv=Vv,
a,, Ifv—=VvinO
e o(v,v )= "7 ’ 1
6.o(VsV) —a,, ifv' =vin0, (1)

0 if (v,v') ¢ E(G).

Oriented Cartesian product

The oriented Cartesian product of naturally labeled oriented graphs ( Gy, 01),

., (Gk, Of) is the graph G G, with orientation & given as fol-
lows.  For each i € [k], if uj — u! in O;, then & gives orientation
(ul,...,u,-,...,uk) — (ul,...,u’- uk) it u,-+1—|—u,-+2—|—---—|—uk—|—(k—i) =0

R
(mod 2) and (uy,...,ul ... uk) — (u1,. .., uj, ..., ug) otherwise.

(Extended) Monopole-dimer model 2]

In the case of oriented Cartesian product of plane graphs each with a Pfaffian
orientation, the loop-vertex model is known as the monopole-dimer model and
the weight of a loop £ = (vg, v1,...,Vok_1, Vo = Vp) can be written independent
of the orientation |2, Theorem 3.8]. In particular, for a plane graph, it can be
expressed [1] as
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Consequetly, det #; becomes independent of the k Pfaffian orientations.

High-dimensional cylindrical grid

An

¢-cylindrical grid denoted in, n, is the graph C,LI---LUC,,
P, H---0P,,. For £ =1 (£ =d), we call it a cylindrical (toroidal) grid

and use the notation in,m’nd (Q,Tlcjf”,nd).

Figure: The boustrophedon labelling on the cylindrical grid lez-

Monopole-dimer model on cylindrical grid

Let G be the /-cylindrical grid graph ngl,---ﬁmd with boustrophedon labelling
in d dimension. Let (G,0') be obtained from G by orienting the edges from
a lower-labelled vertex to a higher-labelled vertex. Let the vertex weights be
x for all vertices of G, and edge weights be ay,...,ay for the edges along the
different coordinate axes. Then the partition function of the monopole-dimer

model on G is given by
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High-dimensional Mobius grid

be the d-dimensional grid graph, add an edge between the vertices
(1,kp,...,kg) and (ny,m—ko+1,...,ng—kyg+1) forall 1 < k< n;j(2<i<d)
to obtain the d-dimensional Mobius grid graph and denoted as Q,'X'?F’.’nd. We
call these edges as dashed edges and the remaining as solid edges. Orient
the solid edges from lower-labelled vertex to higher-labelled vertex, orient the
dashed edge at 1 outward and the remaining dashed edges such that each two-

dimensional square satisfies the clockwise-odd property.
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Figure: The three-dimensional Mobius grid graph QMOb

Monopole-dimer model on Mabius grid

We define the monopole-dimer model on the d-dimensional Mobius grid graph
G as the loop-vertex model on G with the above orientation &. The partition
function of the monopole-dimer model is then the partition function of the
loop-vertex model.

Let G be the three-dimensional Mobius grid graph QzMn%lfzmz,zm;ﬁ with boustro-

phedon labelling. Let the vertex weights be x for all vertices of G, and edge
weights be ai,ay and a3z for the edges along the x-,y- and z- coordinate axes
respectively. Then the partition function of the monopole-dimer model on G is

given by
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Relation between cylindrical and Mobius grid

Let ffn 2205 and sz'\,f'lognzjz% be the partition function of the monopole-dimer
model on the three-dimensional Mébius grid Q'\f'szn ,2n, and cylindrical grid
chgl 223 with boustrophedon labelling, respectively. Then

2
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The three-dimensional Klein grid graph can be defined along the similar lines
and the partition function of the monopole-dimer model on the Klein grid is

given by
mp  mp mj3 . : ) 4
gKlein (41— 1)m > . 2(2h—1)x > . 22317
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The product formula for Mobius and Klein does not generalise to higher dimensions.
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