

A Toric Analogue for Greene's Rational Function of a Poset

Elise Catania

University of Minnesota

Greene's Rational Function of a Poset

Motivated by a combinatorial proof of the Murnaghan-Nakayama formula, C. Greene associated to every poset P on $\lceil n \rceil = \{1, 2, ..., n\}$ a rational function

$$\Psi^{P}(\mathbf{x}) = \sum_{w \in \mathcal{L}(P)} \frac{1}{(x_{w_1} - x_{w_2})(x_{w_2} - x_{w_3}) \cdots (x_{w_{n-1}} - x_{w_n})}.$$

Here $\mathcal{L}(P)$ denotes the set of linear extensions $w = (w_1 < \cdots < w_n)$ of P.

Example. We evaluate Greene's rational function for two posets.

Properties of $\Psi^P(\mathbf{x})$

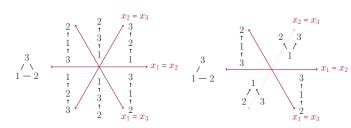
Theorem (Greene). For a strongly planar poset, if H(P) is disconnected, the function $\Psi^{P}(\mathbf{x})$ vanishes and otherwise, we have

$$\Psi^{P}(\mathbf{x}) = \frac{\prod_{\delta \in \Delta} (x_{\min(\delta)} - x_{\max(\delta)})}{\prod_{i \le p, i} (x_i - x_i)},$$

where Δ is the set of bounded regions of H(P).

Theorem (Boussicault). For any poset, H(P) is disconnected iff $\Psi^{P}(\mathbf{x}) = 0$.

Theorem (Boussicault-Féray-Lascoux-Reiner). For a connected poset, the minimal denominator of $\Psi^{p}(\mathbf{x})$ is $\prod_{i \in pi} (x_{i} - x_{i})$.


Posets and Graphic Hyperplane Arrangements

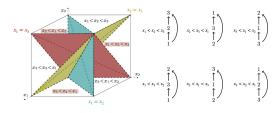
A poset P on [n] gives rise to an open polyhedral cone c(P) in \mathbb{R}^n , where $c(P):=\{x\in\mathbb{R}^n: x_i\in\mathbb{R}^n: x_i\in\mathbb{R}^n$

 $c(P) \coloneqq \{x \in \mathbb{R}^n : x_i < x_j \text{ if } i <_P j\}.$

Let G be a simple, undirected graph on the vertex set [n]. Then, the *graphic hyperplane arrangement* $\mathcal{A}(G)$ is defined to be $\mathcal{A}(G) \coloneqq \bigcup_{\{i,j\} \in G} \mathcal{H}_{ij}$ where \mathcal{H}_{ij} is the hyperplane $x_i = x_j$.

Example. Pictures drawn within the 2-plane $x_1 + x_2 + x_3 = 0$ in \mathbb{R}^3 .

Chambers in \mathbb{R}^n – $\mathcal{A}(G)$ biject with acyclic orientations of G.

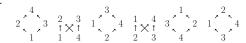

Toric Posets and Toric Graphic Hyperplane Arrangements

Let $\pi: \mathbb{R}^n \to \mathbb{R}^n/\mathbb{Z}^n$. The toric graphic hyperplane arrangement associated to G is

$$A_{tor}(G) = \pi(A(G)).$$

A connected component of $\mathbb{R}^n/\mathbb{Z}^n$ – $\mathcal{A}_{tor}(G)$ is a *toric chamber*.

Example.


The uncolored version of the cube on the left is from [4].

Definition. If quivers Q_1, Q_2 differ by converting a source to a sink or vice versa, then they differ by a *flip*.

Theorem (Develin–Macauley–Reiner). Toric chambers of $A_{tor}(G)$ biject with flip-equivalence classes of acyclic quivers having underlying graph G.

Definition. A *toric poset* [Q] is a flip-equivalence class of acyclic quivers.

Example.

Definition. For a toric poset [Q], the set of toric total extensions $\mathcal{L}_{tor}([Q])$ is defined as $\mathcal{L}_{tor}([Q]) := \{[w] : w \in \mathcal{L}(Q') \text{ for some } Q' \in [Q]\}.$

Toric Analogue

Definition. Let [Q] be a toric poset. Then, we define $\Psi_{\text{\tiny tor}}^{[Q]}(\mathbf{x})$ as

$$\Psi_{\text{tor}}^{[Q]}(\mathbf{x}) \coloneqq \sum_{[w] \in \mathcal{L}_{\text{tor}}([Q])} \Psi_{\text{tor}}^{[w]}(\mathbf{x}), \text{ where}$$

$$\mathbf{x}) = \frac{1}{(\mathbf{x} - \mathbf{y}_{\text{tor}}) \cdot (\mathbf{x} - \mathbf{y}_{\text{$$

Recovering the Kleiss-Kuijf Shuffle Relations

Theorem. Let P be a bounded, strongly planar poset with $\hat{0}, \hat{1}$. Let Q be the quiver resulting from adding the edge $\hat{0} \rightarrow \hat{1}$ in H(P). Then,

$$\Psi^{[Q]}_{\mathrm{tor}}(\mathbf{x}) = \frac{1}{x_1 - x_0} \frac{\prod_{\delta \in \Delta}(x_{\min(\delta)} - x_{\max(\delta)})}{\prod_{i < pj}(x_i - x_j)}. \quad b_k \\ b_{k-1} \\ b_{k-1} \\ c_{j-1} \\ \vdots \\ c_{j-1} \\ \vdots \\ c_{j-1} \\ \vdots \\$$

Properties of $\Psi^{[Q]}_{\mathrm{tor}}(\mathbf{x})$

Theorem. Let [Q] be a toric poset and G the underlying graph of [Q]. If G is disconnected with at least three vertices or has a cut vertex, then $\Psi_{iQ}^{[Q]}(\mathbf{x}) = 0$.

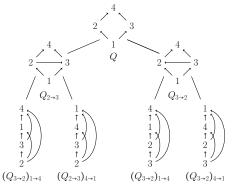
Theorem. For [Q] a toric poset, $\Psi_{\text{tor}}^{[Q]}(\mathbf{x})$ can be expressed over denominator

$$\prod_{\{i,j\}\in[Q]_{\text{Hasse}}} (x_i - x_j)$$

where we take the product over all edges $\{i, j\}$ in $[Q]_{\text{Hasse}}$

A Recursive Algorithm for Finding Toric Total Extensions

Theorem. Let a, b be two torically incomparable elements in the toric poset [Q].


(i) For a,b in different components of the graph of [Q], then $[Q_{a\to b}]$ = $[Q_{b\to a}]$ and

$$\mathcal{L}_{tor}([Q]) = \mathcal{L}_{tor}([Q_{a\rightarrow b}]) = \mathcal{L}_{tor}([Q_{b\rightarrow a}]).$$

(ii) Assume a,b are distance two in the graph of the toric transitive closure $\overline{[Q]}$, say both adjacent to the vertex v. Then if one chooses $Q' \in \overline{[Q]}_v$, that is, Q' is a representative of $\overline{[Q]}$ with v a source, we have

$$\mathcal{L}_{tor}([Q]) = \mathcal{L}_{tor}([Q'_{a \to b}]) \sqcup \mathcal{L}_{tor}([Q'_{b \to a}]).$$

Example.

Reading the leaves left-to-right,

$$\mathcal{L}_{tor}([Q]) = \{[(1,4,2,3)], [(1,2,3,4)], [(1,4,3,2)], [(1,3,2,4)]\}.$$

The following theorem is a key component in the proof of our algorithm.

Theorem. When Q_1,Q_2 are flip-equivalent acyclic quivers having vertex v as a source, they are flip-equivalent by a flip sequence keeping v a source throughout.

References

- [1] A. Boussicault. Action du groupe symétrique sur certaines fractions rationnelles suivi de puissances paires du vandermonde, 2009.
- [2] A. Boussicault, V. Féray, A. Lascoux, and V. Reiner. Linear extension sums as valuations of cones. Journal of Algebraic Combinatorics, 35: 573-610, 2010.
- [3] E. Catania. A toric analogue for greene's rational function of a poset, 2024. arXiv:2409.04907.
- [4] M. Develin, M. Macauley, and V. Reiner. Toric partial orders. Transactions of the American Mathematical Society, 368(4):2263–2287, 2016.
- [5] C. Greene. A rational-function identity related to the Murnaghan-Nakayama formula for the characters of S_n. Journal of Algebraic Combinatorics, 1(3):235–255, 1992.
- [6] R. Kleiss and H. Kuijf. Multigluon cross sections and 5-jet production at hadron colliders. Nuclear Physics B, 312(3):616-644, 1989.