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Greene’s Rational Function of a Poset

Motivated by a combinatorial proof of the Murnaghan–Nakayama formula, C.
Greene associated to every poset P on [n] = {1, 2, . . . , n} a rational function

�
P
(x) = �

w∈L(P )

1

(xw1
− xw2

)(xw2
− xw3

)�(xwn−1
− xwn

)
.

Here L(P ) denotes the set of linear extensions w = (w1 < � < wn) of P .

Example. We evaluate Greene’s rational function for two posets.

�P1(x) = 0

1

2 3

4

5

6 7
P1

�P2(x) = x1−x6

(x2−x3)(x2−x4)(x1−x4)(x1−x5)(x4−x6)(x5−x6)

2 1

3 4 5

6P2

Properties of �P(x)

Theorem (Greene). For a strongly planar poset, if H(P ) is disconnected, the
function �P(x) vanishes and otherwise, we have

�
P
(x) = ∏”∈�(xmin(”) − xmax(”))

∏i�Pj(xi − xj)
,

where � is the set of bounded regions of H(P ).

Theorem (Boussicault). For any poset, H(P ) is disconnected iff �P(x) = 0.

Theorem (Boussicault–Féray–Lascoux–Reiner). For a connected poset, the
minimal denominator of �P(x) is ∏i�P j(xi − xj).

Posets and Graphic Hyperplane Arrangements

A poset P on [n] gives rise to an open polyhedral cone c(P ) in Rn, where
c(P ) ∶= {x ∈ Rn

∶ xi < xj if i <P j}.

Let G be a simple, undirected graph on the vertex set [n]. Then, the graphic
hyperplane arrangement A(G) is defined to be A(G) ∶= �{i,j}∈GHij where Hij is
the hyperplane xi = xj.

Example. Pictures drawn within the 2-plane x1 + x2 + x3 = 0 in R3.
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Chambers in Rn −A(G) biject with acyclic orientations of G.

Toric Posets and Toric Graphic Hyperplane Arrangements

Let fi ∶ Rn → Rn�Zn. The toric graphic hyperplane arrangement associated to G is
Ator(G) = fi(A(G)).

A connected component of Rn�Zn −Ator(G) is a toric chamber.
Example.

The uncolored version of the cube on the left is from [4].

Definition. If quivers Q1, Q2 differ by converting a source to a sink or vice versa,
then they differ by a flip.

Theorem (Develin–Macauley–Reiner). Toric chambers of Ator(G) biject with
flip-equivalence classes of acyclic quivers having underlying graph G.

Definition. A toric poset [Q] is a flip-equivalence class of acyclic quivers.

Example.
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Definition. For a toric poset [Q], the set of toric total extensions Ltor([Q]) is
defined as Ltor([Q]) ∶= {[w] ∶ w ∈ L(Q

′) for some Q′ ∈ [Q]}.

Toric Analogue

Definition. Let [Q] be a toric poset. Then, we define �
[Q]

tor
(x) as

�
[Q]

tor
(x) ∶= �

[w]∈Ltor([Q])

�
[w]

tor
(x), where

�
[w]

tor
(x) = 1

(xw1
− xw2

)(xw2
− xw3

)�(xwn−1
− xwn

)(xwn
− xw1

)
.

Recovering the Kleiss-Kuijf Shuffle Relations

Theorem. Let P be a bounded, strongly planar poset with 0̂, 1̂. Let Q be the
quiver resulting from adding the edge 0̂→ 1̂ in H(P ). Then,

�
[Q]

tor
(x) = 1

x
1̂
− x

0̂

∏”∈�(xmin(”) − xmax(”))

∏i�P j(xi − xj)
.

Let b = (b1, b2, . . . , bk) and c = (c1, c2, . . . , cj).

Corollary (Kleiss-Kuijf Relations). For �
[Q]

tor
(x) where

[Q] contains the quiver to the right,

�
[Q]

tor
(x) = �

a∈b c
�
[(1̂,0̂,a)]
tor

(x) = (−1)k�[(1̂,rev(b),0̂,c)]
tor

(x).
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Properties of �
[Q]

tor
(x)

Theorem. Let [Q] be a toric poset and G the underlying graph of [Q]. If G is
disconnected with at least three vertices or has a cut vertex, then �

[Q]

tor
(x) = 0.

Theorem. For [Q] a toric poset, �
[Q]

tor
(x) can be expressed over denominator

�

{i,j}∈[Q]Hasse

(xi − xj)

where we take the product over all edges {i, j} in [Q]Hasse.

A Recursive Algorithm for Finding Toric Total Extensions

Theorem. Let a, b be two torically incomparable elements in the toric poset [Q].

(i) For a, b in different components of the graph of [Q], then [Qa→b] = [Qb→a]

and
Ltor([Q]) = Ltor([Qa→b]) = Ltor([Qb→a]).

(ii) Assume a, b are distance two in the graph of the toric transitive closure [Q],
say both adjacent to the vertex v. Then if one chooses Q′ ∈ [Q]

v
, that is, Q′

is a representative of [Q] with v a source, we have
Ltor([Q]) = Ltor([Q

′

a→b
]) �Ltor([Q

′

b→a
]).

Example.
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Reading the leaves left-to-right,
Ltor([Q]) = {[(1, 4, 2, 3)], [(1, 2, 3, 4)], [(1, 4, 3, 2)], [(1, 3, 2, 4)]}.

The following theorem is a key component in the proof of our algorithm.

Theorem. When Q1, Q2 are flip-equivalent acyclic quivers having vertex v as a
source, they are flip-equivalent by a flip sequence keeping v a source throughout.
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