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Greene’s Rational Function of a Poset

Toric Posets and Toric Graphic Hyperplane Arrangements

Properties of \PT[Z‘f} (x)

Motivated by a combinatorial proof of the Murnaghan-Nakayama formula, C.
Greene associated to every poset P on [n] ={1,2,...,n} a rational function

W)= 3 !
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Here £(P) denotes the set of linear extensions w = (w; < -+ < w,) of P.

Example. We evaluate Greene's rational function for two posets.
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Properties of U (x)

Theorem (Greene). For a strongly planar poset, if H(P) is disconnected, the
function W (x) vanishes and otherwise, we have

HJEA(xlxlill((i) - xlnax(ﬁ))

[icpy (i = 7))

where A is the set of bounded regions of H(P).

UP(x) =

Theorem (Boussicault). For any poset, H(P) is disconnected iff U7 (x) = 0.

Theorem (Boussicault-Féray-Lascoux-Reiner). For a connected poset, the
minimal denominator of W’ (x) is [T;.,;(zi - x;).

Posets and Graphic Hyperplane Arrangements

A poset P on [n] gives rise to an open polyhedral cone ¢(P) in R”, where
o(P)={zeR":x;<z;ifi<pj}.

Let G be a simple, undirected graph on the vertex set [n]. Then, the graphic
hyperplane arrangement A(G) is defined to be A(G) = Uy jyeq Hij where Hj is
the hyperplane z; = z;.

Example. Pictures drawn within the 2-plane 2y + 25 + 23 = 0 in R?.
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Chambers in R" - A(G) biject with acyclic orientations of G.

Let 7 : R* - R"/Z". The toric graphic hyperplane arrangement associated to G is
Aur(G) = w(A(G)).
A connected component of R"/Z" — A;,(G) is a toric chamber.

Example.
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The uncolored version of the cube on the left is from [4].

Definition. If quivers @y, Q. differ by converting a source to a sink or vice versa,
then they differ by a flip.

Theorem (Develin-Macauley-Reiner). Toric chambers of A, (G) biject with
flip-equivalence classes of acyclic quivers having underlying graph G.

Definition. A toric poset [Q] is a flip-equivalence class of acyclic quivers.

Example.

Definition. For a toric poset [Q], the set of toric total extensions L, ([Q]) is
defined as L ([Q]) = {[w] : w € L(Q") for some Q" € [Q]}.

Toric Analogue

Definition. Let [Q] be a toric poset. Then, we define \P'[ffJ(x) as
V)= 3w, where
[w]eLir([Q])
1
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Recovering the Kleiss-Kuijf Shuffle Relations

Theorem. Let P be a bounded, strongly planar poset with 0,1. Let Q be the
quiver resulting from adding the edge 0 — 1 in H(P). Then,
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Let b = (by,by,...,bx) and c = (¢, ¢, ..., ¢j). i T
Corollary (Kleiss-Kuijf Relations). For \I/L(f](x) where 1;2 C’;
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Theorem. Let [Q] be a toric poset and G the underlying graph of [Q]. If G is
disconnected with at least three vertices or has a cut vertex, then \I/'[ff](x) =0.
Theorem. For [Q] a toric poset, \P'[S{J(X) can be expressed over denominator
(.T, - 'Tj)
{i.7}e[@Qlnase
where we take the product over all edges {i, 5} in [Q]Hasse-

A Recursive Algorithm for Finding Toric Total Extensions

Theorem. Let a,b be two torically incomparable elements in the toric poset [Q].

(i) For a,b in different components of the graph of [Q], then [Qp] = [Q1-a]
and

Lia([Q]) = Lior([Qa=t]) = Lion([Qv=a])-

(i) Assume a, b are distance two in the graph of the toric transitive closure [Q],
say both adjacent to the vertex v. Then if one chooses Q' € [@Q],, that is, @’

is a representative of [Q] with v a source, we have
Lio:([Q1) = Lior([Q0]) U Lior([Q7])-

Example. 4
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Reading the leaves left-to-right,
Lia([Q]) = {[(1,4,2,3)], [(1,2,3,4)].[(1,4,3,2) ], [(1,3,2, )]}
The following theorem is a key component in the proof of our algorithm.

Theorem. When @1, @, are flip-equivalent acyclic quivers having vertex v as a
source, they are flip-equivalent by a flip sequence keeping v a source throughout.
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