linear form in the squarefree algebra Gröbner bases and the Lefschetz properties for powers of a general

Joint with Samuel Lundqvist, Fatemeh Mohammadi, Matthias Orth and Eduardo Sáenz-de-Cabezón

Goal of the poster

Consider the polynomial ring $R = \mathbf{k}[x_1, \dots, x_n]$ over a field \mathbf{k} of characteristic zero.

We want to determine the reduced Gröbner basis of all ideals of the form

$$I_{n,k} = (x_1^2, \dots, x_n^2, (x_1 + \dots + x_n)^k).$$

This is done by finding a candidate for each Gröbner basis and then showing that we have the right number of polynomials.

Some commutative algebra

Let \prec be a monomial order on R. The *initial ideal* in(I) of a ideal I of R is the monomial ideal generated by the largest monomials w.r.t. \prec of all $f \in I$. A Gröbner hasts in I is a finite collection of polynomials $G = \{g_1, \dots, g_m\}$ in I such that

dimensions of its graded pieces, The *Hilbert series* of an algebra $A = \mathbf{k}[x_1, \dots, x_n]/I$ is the generating series for the

$$\mathrm{HS}(A;t) = \sum_{i=0}^{\infty} \dim_{\mathbf{k}}(A_i)t^i$$

polynomial. It is known that In all cases here, A will be artinian, i.e. $\dim_{\mathbf{k}}(A_i) = 0$ for $i \gg 0$, so $\mathrm{HS}(A;t)$ will be a

$$HS(R/I;t) = HS(R/in(I);t)$$

Since $\operatorname{in}(I)$ is a monomial ideal, calculating $\operatorname{HS}(R/\operatorname{in}(I);t)$ becomes a counting ques-

there is a homogeneous polynomial $\ell \in A_1$ of degree one such that all multiplication An artinian algebra $A = \mathbf{k}[x_1, \dots, x_n]/I$ has the strong Lefschetz property (SLP) if

$$\cdot \ell^k : A_i \to A_i$$

sending f to $\ell \cdot f$, are either injective or surjective for all $i,k \geq 0$. If it holds for k=1, we say A has the weak Lefschetz property (WLP).

 $\mathrm{HS}(A;t)=(1+t)^n.$ Further, A has the SLP iff for all $k\geq 2$ we have **Example 1.** By counting squarefree monomials, we have for $A = R/(x_1^2, \dots, x_n^2)$ that

$$HS(A/(x_1 + \dots + x_n)^k; t) = HS(R/I_{n,k}; t) = [(1 - t^k)(1 + t)^n]$$

where the brackets indicate truncation at the first non-positive coefficient

The answer to our main question is the following description.

Theorem 2 ([JKLM+24]). The reduced Gröbner basis of $I_{n,k}$ for $k \ge 2$ is given by

$$G_{n,k} = \{x_1^2, \dots, x_n^2\} \cup \bigcup_{\substack{d \in [n-k]/2 \ d \ k}}^{k+[(n-k)/2]} \{g_{A,n,k} \mid A \in \mathcal{A}, |A| = d\},$$

and minimal with respect to inclusion. For |A| = d, where A is the family of subsets $A \subseteq \{1, \ldots, n\}$ satisfying $\max(A) = 2|A| - k$,

$$g_{A,n,k} = e_d(x_{i_1}, \dots, x_{i_{n-d+k}})$$
 (1)

the set $\{i_1,\ldots,i_{n-d+k}\}=A\cup\{2d-k+1,\ldots,n\}.$ is the elementary symmetric polynomial of degree d in the variables indexed by

To show each $g_{A,n,k} \in I_{n,k}$, we use the following relation

Proposition 3. Let $f_{S,n,k} \in I_{n,k}$ for $S \subseteq [n]$ be the squarefree part of the polynomial $(\prod_{i \in S} x_i)(x_1 + \dots + x_n)^k$. Then the elements $g_{A,n,k}$ can be written as

$$g_{A,n,k} = \sum_{i=0}^{d-k} (-1)^i \frac{k}{(k+i)\binom{d}{k+i}} \sum_{S \in T(A)} f_{S,n,k}$$

where d = |A| and

$$T_i(A) = \{ S \subseteq [n] : |S| = d - k \text{ and } |S \cap (\{1, \dots, 2d - k\} \setminus A)| = i \}.$$

The proof of the above relation relies on

$$\sum_{i=0}^{j}(-1)^i\binom{j}{i}\binom{k+i-1}{j-1}=0$$

for all $j,k\geq 1,$ a fun exercise for any one interested

Lattice paths

series for $R/I_{n,k}$ cannot be smaller than this coefficient-wise, we have $\operatorname{HS}(R/(\operatorname{in}(G_{n,k}))) = [(1-t^k)(1+t)^n]$. If so, since it is known that the Hilbert To conclude that $G_{n,k}$ is a Gröbner basis for $I_{n,k}$, it suffices to show that

$$\begin{split} \left[(1-t^k)(1+t)^n \right] & \leq \mathrm{HS}(R/I_{n,k};t) = \mathrm{HS}(R/\mathrm{in}(I_{n,k});t) \\ & \leq \mathrm{HS}(R/(\mathrm{in}(G_{n,k}))) = \left[(1-t^k)(1+t)^n \right] \end{split}$$

thereby proving that $(\operatorname{in}(G_{n,k})) = \operatorname{in}(I_{n,k})$ and that $R/(x_1^2,\dots,x_n^2)$ has the SLP. This equality of Hilbert series is done via a lattice path bijection.

steps (in the direction (1,0), denoted E). For example, and consists only of northward steps (in the direction (0, 1), denoted N) and eastward **Definition 4.** An (N, E)-lattice path is a path on the lattice \mathbb{Z}^2 that begins at (0, 0)

$$NEENEN \leftrightarrow x_1x_4x_6$$
.

There exists a bijection that maps an (N, E)-lattice path of length n taking d steps north to the squarefree monomial $\prod_{j \in J} x_j$ of degree d where the subset $J \subseteq [n]$

contains an index j if and only if the j-th step in the path is north

1. A lattice path intersects the line y = x + k if and only if the corresponding Proposition 5. We have the following necessary result for the lattice paths monomial is divisible by some $in(g_{A,n,k})$ where $g_{A,n,k} \in G_{n,k}$.

3. If 2d - k < n, the number of lattice paths taking d steps north and touching 2. Monomials outside in($G_{n,k}$) are in bijection with lattice paths never touching y = x + k taking exactly n steps.

Here 1. is a translation of $\max(A) = 2|A| - k$ for $g_{An,k}$ to lattice paths and 3. can be proven via an induction on the length of the lattice path. Since there coefficient of t^d in $HS(R/(in(G_{n,k})))$ is $\binom{n}{d} - \binom{n}{d-k}$ when 2d-k < n. Since are $\binom{n}{d}$ lattice paths taking d steps north and n steps in total, 2. gives that the $y = x + k \text{ is } \binom{n}{d-k}$.

Example 6. The reduced Gröbner basis of $I_{5,2}$ is

part of $HS(R/(in(G_{n,k}))) = [(1-t^k)(1+t)^n].$

 $[(1-t^k)(1+t)^n]$ has the same coefficient of t^d for those d, this proves the main

$$G_{5,2} = \{x_1^2, x_2^2, x_3^2, x_4^2, x_5^2, g_{\{1,2\},5,2}, g_{\{1,3,4\},5,2}, g_{\{2,3,4\},5,2}\},$$

 $g_{\{1,2\},5,2} = e_2(x_1, x_2, x_3, x_4, x_5) = x_1x_2 + x_1x_3 + \dots + x_4x_5$

where

The lattice path associated to $\inf(g_{\{1,3,4\},5,2}) = x_1x_3x_4$ is illustrated below

 $g_{\{2,3,4\},5,2} = e_3(x_2,x_3,x_4,x_5) = x_2x_3x_4 + x_2x_3x_5 + x_2x_4x_5 + x_3x_4x_5$

Stockholm University Filip Jonsson Kling

filip.jonsson.kling@math.su.se

Enumeration and more Lefschetz

Counting the Gröbner basis elements of specified degrees gives some nice combinatorial

d. Then c_{d,1} is an enumeration of the Catalan numbers and **Proposition 7.** Fix n large and let $c_{d,k}$ be the number of $g_{A,n,k} \in G_{n,k}$ of degree

$$\sum_{d=0}^{\infty} c_{d,k} t^d = \left(\sum_{d=0}^{\infty} c_{d,1} t^d\right)^k.$$

until it reaches the line at (d-k,d) with its last north step. Note that $c_{d,k}$ is also the number of lattice paths that stay strictly below y = x + k

then fails even the weak Lefschetz property. $R/I_{n,k}$ has the SLP. However, this is for most interesting values of k not the case as it Having given a new proof that $R/(x_1^2, \ldots, x_n^2)$ has the SLP, one may wonder if also

Theorem 8. For general linear forms $\ell_1, \ldots, \ell_{n+1}$, the algebra $R/(\ell_1^2, \ldots, \ell_n^2, \ell_{n+1}^k) \cong$ $R/(x_1^2,\ldots,x_n^2,(x_1+\cdots+x_n)^k)=R/I_{n,k}$ has the weak Lefschetz property iff

$$\begin{cases} k \ge \frac{n-3}{2} & \text{for } n \text{ odd,} \\ k \ge \frac{n}{2} & \text{for } n \text{ even.} \end{cases}$$

explicit relations between powers of general linear forms in $R/(x_1^2,\dots,x_n^2)$ for the failure of the WLP. The proof uses the structure of $in(I_{n,k})$ for the parts where it has the WLP and some

What about higher powers?

Gröbner basis elements are now more complicated than just elementary symmetric polynomials. See [JKLMO25] for more details. Replacing (x_1^2, \dots, x_n^2) with $(x_1^{m_1}, \dots, x_m^{m_n})$, one can show similar results for $(x_1^{m_1}, \dots, x_n^{m_n}, (x_1 + \dots + x_n)^k)$. The initial ideals can in this case also be found using some lattice path bijections, and counting the number of elements of each degree Replacing (x_1^2, \dots, x_n^2) with (x_1^m) can give the Motzkin, Riordan and other interesting sequences. However, the explicit

References

[JKLM+24] Filip Jonsson Kling, Samuel Lundqvist, Fatemeh Mohammadi, Matthias Orth, and Eduardo general linear form in the squarefree algebra. arXiv preprint arXiv:2411.10209, 2024. báenz-de Cabezón. Gröbner bases, resolutions, and the Lefschetz properties for powers of a

[JKLMO25] Filip Jonsson Kling, Samuel Lundqvist, Fatemeh Mohammadi, and Matthias Orth. The Gröbner basis for powers of a general linear form in a monomial complete intersection