Grobner bases and the Lefschetz properties for powers of a general
linear form in the squarefree algebra
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Goal of the poster

Consider the polynomial ring R = k1, ..., z,] over a field k of characteristic zero.

We want to determine the reduced Grobner basis of all ideals of the form

Ly= Aaw . v.ﬁwz (z1 +

This is done by finding a candidate for each Grobner ba
have the right number of polynomials.

+ a:vJ.

and then showing that we

Some commutative algebra

Let < be a monomial order on R. The initial ideal in(1) of a ideal I of R is the
monomial ideal generated by the largest monomials w.r.t. < of all f € I. A Grébner
basis for I is a finitc collection of polynowmials G = {gi, gm} in 1 such that
(in(G)) = in(I).

The Hilbert series of an algebra A = k[, ..
dimensions of its graded pieces,

.. ) /1 is the generating series for the
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I all cases here, A will be artinian, Le. dimg(A;) = 0 for i > 0, so HS(A;t) will be a
polynomial. It is known that

HS(R/I;t) = HS(R/in(1);1).
Since in(/) is a monomial ideal, calculating HS(R/in(1
Ew/ﬂ. artinian algebra A = k|z;, z,)/I has the strong Lefschetz property (SLP) if

there is a homogencous polynomial £ € Ay of degree one such that all multiplication
maps

t) becomes a counting ques-
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sending f to £- f, are either injective or surjective for all ¢, k > 0. If it holds for k& = 1,
we say A has the weak Lefschetz property (WLP).

Example 1. By counting squarefree monomials, we have for A = R/(x?, ..., 22) that
HS(A;t) = (1 +t)". Further, A has the SLP iff for all k > 2 we have

HS(A/ () + -+ + )" t) = HS(R/Loyst) = [(1 = F)(1 +1)")

where the brackets indicate truncation at the first non-positive coefficient.

Main result
The answer to our main question is the following description
Theorem 2 ([JKLM'24]). The reduced Grébner basis of L for k > 2 is given by
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where A is the family of subsets A C {1,
and minimal with respect to inclusion.

..} satisfying max(A) =
Al =d,

Gank = CalTiys - Tiy ) (1)

is the clementary symmectric polynomial of degree d in the variables indcexed by
the set {ir, ... ip—ain} = AU {2d =k +1,....n}.

To show each g4, € Ik, we use the following relation.

Proposition 3. Let fs, € Ly for S C [n] be the squarcfree part of the polyno-
mial ([Tieg i) (@1 + -+ + x,)*. Then the elements ga . can be written as
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where d = [A| and
TA) = {SCn: |8 —d ({1, 2d — 3\ A)| = i}

The pi of the above relat es o1l
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for all j, k > 1, a fun exercise for anyone interested

Lattice paths

To conclude that G, is a Grobner basis for I, it suffices to show that
HS(R/(in(G,x)) = [(1 =) (1+1)"]. If so, since it is known that the Hilbert
series for R/I, ) cannot be smaller than this coefficient-wise. we have
[(1 =t +1)"] < HS(R/Tut) = HS(R/in(L,4);t)
< HS(R/(n(Gop))) = [(1 = 1)1+ )]
’) has the SLP. This

thereby proving that (in(G, ) = in(Z,, 4) and that R/(x?
equality of Hilbert series is done via a lattice path bijection.
Definition 4. An (N, E)-lattice path is a path on the lattice Z* that begins at (0,0)
and consists only of northward steps (in the direction (0, 1), denoted N) and eastward
steps (in the direction (1.0), denoted E). For example,

NEENEN < z1x476.

There exists a bijection that maps an (N, E)-lattice path of length n taking d steps
north to the squarefree monomial [],c;%; of degree d where the subset J C [n]
contains an index j if and only if the j-th step in the path is north.

Proposition 5. We have the following necessary result for the lattice paths.

~

. A lattice path intersects the line y = x + k if and only if the corresponding
monomial is divisible by some in(gan i) where ganr € Gy

2o

. Monomials outside in(G,, 1) are in bijection with lattice paths never touching
y = x + k taking czactly n steps.

o

1f2d — k < n, the number of lattice paths taking d steps north and touching
y=a+kis ()

Here 1. s a translation of max(A) 2|A| — k for gan to lattice paths and
3. can be proven via an induction on the length of the lattice path. ‘Since there
are @v lattice paths taking d steps north and n steps in total, 2. gives that the
cocticient of ¢! in HS(R/(i(G,x)) is (3) — (,",) when 2d — k < n. Since
Th — ") (1 + J@ has the same coefficient of t* for those d, this proves the main
part of HS(R/(in(G,.4))) = [(1 — t")(1 +£)"].

Example 6. The reduced Grobner basis of I, is

2 2 .2
Gsp = {2, 25, 23, 2%, 28, 910150, G115 G215}
where
G12)52 = €2AT1, T2, Ty, Ty, Ts) = 1Ty + D15 + -+ T4Ts,
9134352 = €3(T1, T3, Ty, T3) = T1T3Ty + T1T3T5 + T1T4T5 + T3T4Ts5,
9p234y52 = €3(T2, T3, Ty, T3) = Toaly + TaTas | TaLals |+ T3T4T5.

The lattice path associated to in(gqs.452) = 212374 is illustrated below,
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Enumeration and more Lefschetz

Counting the Grobner basis elements of specified degrees gives some nice combinatorial
sequences.

Proposition 7. Fiz n large and let cqy, be the number of ga.x € Guy of degree
d. Then cq; is an enumeration of the Catalan numbers and

k
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Note that ¢q. is also the number of lattice paths that stay strictly below y = x + &
until it reaches the line at (d — k, d) with its ?v» north step.

Having given a new proof that 1/(x2, ..., #2) has the SLP, one may wonder if also
R/, has the SLP. However, this is for :EL interesting values of £ not the case as it
then fails even the weak Lefschetz property.

Theorem 8. For \\mzmﬁ& :.:Ea forms (1, . 1, the algebra R) (6, .. (2, (k) =

R)(x,. . 2% (x + -+ 2)F) = R/ L) has the weak Lefschetz N%E%w:\ iff

k>3 forn odd,
k>%5 for n even.
The proof uses the structure of in(Zy, ;) for the parts where it has the WLP and some

explicit relations between powers of general linear forms in R/( 22) for the
failure of the WLP.

‘What about higher powers?

my

) with (2", "), one can show similar results for
coe o w)R). H_:, initial ideals can in this case also be found
tice path bijections, and counting the number of clements of cach degree
can give the Motzkin, Riordan and other interesting sequences. However, the explicit
Grobner basis clements are now more complicated than just clementary symmetric
polynomials. See [JKLMO25] for more details.
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