

# Descents and Flag Major Index on Conjugacy Classes of $\mathfrak{S}_{n,r}$ without Short Cycles



Kevin Liu

#### Motivation

**Theorem 1 (Fulman '98).** Let  $C_{\lambda}$  be a conjugacy class of  $\mathfrak{S}_n$  with no cycles of lengths  $1,2,\ldots,2k$ . Then the k-th moments of the descent and major index statistics on  $\mathfrak{S}_n$  align with the respective k-th moments on  $C_{\lambda}$ .

**Corollary 2 (Fulman '98).** Let  $C_{\lambda_n}$  be a conjugacy class of  $\mathfrak{S}_n$  such that for all i, the number of cycles of length i in  $\lambda_n$  approaches 0 as  $n\to\infty$ . Then the distributions of the descent and major index statistics on  $C_{\lambda_n}$  are asymptotically the same as their distributions on  $\mathfrak{S}_n$  (and hence normal).

## Example

The distributions of descents on  $\mathfrak{S}_5$ ,  $C_{(5)}$ ,  $\mathfrak{S}_{15}$ , and  $C_{(15)}$  are shown below.



## **Colored Permutation Groups**

Consider r copies of the integers  $\{1,2,\ldots,n\}$ , each colored by an element in  $\mathbb{Z}_r$ :

$$\left\{i^{[c]}: i \in \{1, 2, \dots, n\}, [c] \in \mathbb{Z}_r\right\}.$$

The colored permutation group  $\mathfrak{S}_{n,r}$  consists of permutations on this set satisfying the condition

if 
$$\omega\left(i^{[0]}\right)=j^{[c]}$$
, then  $\omega\left(i^{[h]}\right)=j^{[c]+[h]}$  for all  $[h]\in\mathbb{Z}_r.$ 

When r=1,  $\mathfrak{S}_{n,1}$  is isomorphic to  $\mathfrak{S}_n$ , and when r=2,  $\mathfrak{S}_{n,2}$  is isomorphic to the signed symmetric (or hyperoctahedral) group  $B_n$ .

# **Example**

A colored permutation  $\omega \in \mathfrak{S}_{5,4}$  can be expressed in two-line and one-line notations by specifying the images of the elements with color [0]:

$$\omega = \begin{bmatrix} 1^{[0]} \ 2^{[0]} \ 3^{[0]} \ 4^{[0]} \ 5^{[0]} \\ 4^{[1]} \ 5^{[3]} \ 1^{[3]} \ 3^{[1]} \ 2^{[1]} \end{bmatrix} = [4^{[1]} 5^{[3]} 1^{[3]} 3^{[1]} 2^{[1]}].$$

A colored permutation can also be expressed in the two-line and one-line cycle notation:

$$\omega = \begin{pmatrix} 1^{[0]} & 4^{[0]} & 3^{[0]} \\ 4^{[1]} & 3^{[1]} & 1^{[3]} \end{pmatrix} \begin{pmatrix} 2^{[0]} & 5^{[0]} \\ 5^{[3]} & 2^{[1]} \end{pmatrix} = (4^{[1]} 3^{[1]} 1^{[3]}) (5^{[3]} 2^{[1]}).$$

#### Colored Cycle Type

In the cycle notation of  $\omega \in \mathfrak{S}_{n,r}$ , the color of a cycle is the sum of the colors that appear in the cycle (as an element in  $\mathbb{Z}_r$ ). The cycle type of  $\omega$  is the r-tuple of partitions  $\lambda = (\lambda^{[0]}, \lambda^{[1]}, \ldots, \lambda^{[r-1]})$  where  $\lambda^{[c]}$  records cycle lengths for the cycles of color [c] in  $\omega$ .

## Example

The cycle type of  $\omega = (4^{[1]}3^{[1]}1^{[3]})(5^{[3]}2^{[1]})$  is  $\lambda = ((2), (3), \emptyset, \emptyset)$ .

#### Conjugacy Classes

Fact. Two elements in  $\mathfrak{S}_{n,r}$  are in the same conjugacy class if and only if they share the same cycle type.

**Notation.** For any r-tuple of partitions  $\lambda$  of n,  $C_{\lambda}$  denotes the conjugacy class consisting of colored permutations in  $\mathfrak{S}_{n,r}$  with cycle type  $\lambda$ .

## **Colored Permutation Statistics**

The descent set of  $\omega \in \mathfrak{S}_{n,r}$  is

$$\mathrm{Des}_{n,r}(\omega) = \left\{ i \in \{1,2,\ldots,n\} : \omega\left(i^{[0]}\right) > \omega\left((i+1)^{[0]}\right) \right\}$$
 where  $>$  is with respect to the ordering

 $1^{[0]} < 2^{[0]} < 3^{[0]} < \cdots < 1^{[1]} < 2^{[1]} < 3^{[1]} < \cdots < 1^{[r-1]} < 2^{[r-1]} < 3^{[r-1]} < \cdots$  and the convention that  $(n+1)^{[0]}$  is a fixed point.

- The descent statistic is  $\operatorname{des}_{n,r}(\omega) = |\operatorname{Des}_{n,r}(\omega)|$
- ullet The major index statistic is  $\mathrm{maj}_{n,r}(\omega) = \sum_{i \in \mathrm{Des}_{n,r}(\omega) \cap [n-1]} i.$
- The color statistic  $\operatorname{col}_{n,r}(\omega)$  is the sum (in  $\mathbb{Z}$ ) of the colors in the one-line notation.
- The flag major index statistic is  $\operatorname{fmaj}_{n,r}(\omega) = r \cdot \operatorname{maj}_{n,r}(\omega) + \operatorname{col}_{n,r}(\omega)$

## Example

The descent set of

$$\omega = \begin{bmatrix} 1^{[0]} & 2^{[0]} & 3^{[0]} & 4^{[0]} & 5^{[0]} & 6^{[0]} & 7^{[0]} & 8^{[0]} \\ 3^{[1]} & 8^{[0]} & 5^{[0]} & 6^{[1]} & 2^{[2]} & 1^{[2]} & 4^{[0]} & 7^{[1]} \end{bmatrix} = [3^{[1]} 8^{[0]} 5^{[0]} 6^{[1]} 2^{[2]} 1^{[2]} 4^{[0]} 7^{[1]}] \in \mathfrak{S}_{8,3}$$

is  $\{1, 2, 5, 6, 8\}$ . For the statistics above, we find

$$\mathrm{des}_{8,3}(\omega) = 5, \mathrm{maj}_{8,3}(\omega) = 14, \mathrm{col}_{8,3}(\omega) = 7, \text{ and } \mathrm{fmaj}_{8,3}(\omega) = 3 \cdot 14 + 7 = 49.$$

## **Classical Permutation Statistics**

When  $r=1, \operatorname{des}_{n,1}$  and  $\operatorname{fmaj}_{n,1}$  reduce to the descent and major index statistics on  $\mathfrak{S}_n$ .

# Known Asymptotical Distributions on $\mathfrak{S}_{n,r}$

Theorem 3 (Chow & Mansour '12). The distribution of  $\mathbf{des}_{n,r}$  has mean  $\mu_{n,r}=\frac{rn+r-2}{2r}$ , has variance  $\sigma_{n,r}^2=\frac{n+1}{12}$ , and is asymptotically normal.

Theorem 4 (Chow & Mansour '12). The distribution of  $\operatorname{fmaj}_{n,r}$  has mean  $\mu_{n,r}=\frac{n(rn+r-2)}{4}$  has variance  $\sigma_{n,r}^2=\frac{2r^2n^3+3r^2n^2+(r^2-6)n}{72}$ , and is asymptotically normal.

## **Main Results**

Theorem 5 (Liu & Yin '25+). Let  $C_{\lambda}$  be a conjugacy class of  $\mathfrak{S}_{n,r}$  with no cycles of lengths  $1,2,\ldots,2k$ . Then the k-th moments of  $\mathrm{des}_{n,r}$  and  $\mathrm{fmaj}_{n,r}$  on  $\mathfrak{S}_n$  align with the respective k-th moments on  $C_{\lambda}$ .

Corollary 6 (Liu & Yin '25+). Let  $C_{\lambda_n}$  be a conjugacy class of  $\mathfrak{S}_{n,r}$  such that for all i, the number of cycles of length i (of any color) in  $\lambda_n$  approaches 0 as  $n \to \infty$ . Then the distributions of  $\operatorname{des}_{n,r}$  and  $\operatorname{fmaj}_{n,r}$  on  $C_{\lambda_n}$  are asymptotically the same as their distributions on  $\mathfrak{S}_{n,r}$  (and hence normal).

# References

- R. Adin and Y. Roichman. The flag major index and group actions on polynomial rings. European Journal of Combinatorics, 22:431–446, 05 2001
- [2] C.-O. Chow and T. Mansour. Asymptotic probability distributions of some permutation statistics for the wreath product C<sub>r</sub> ≀ S<sub>n</sub>. Online Analytic Journal of Combinatorics, 7:Article #2, 12 2012.
- [3] J. Fulman. The distribution of descents in fixed conjugacy classes of the symmetric groups. J. Combin. Theory Ser. A, 84(2):171–180, 1998.
- [4] K. Liu and M. Yin. Descents and flag major index on conjugacy classes of colored permutation groups without short cycles, 2025, arxiv:2503.02990.
- [5] E. Steingrimsson. Permutation statistics of indexed permutations. European Journal of Combinatorics, 15(2):187-205, 1994

# **Approach for Descents**

Define  $X_i:\mathfrak{S}_{n,r}\to\mathbb{R}$  to be the indicator function for a descent at position i,

$$X_i(\omega) = \begin{cases} 1 & \text{if } i \in \mathrm{Des}_{n,r}(\omega) \\ 0 & \text{otherwise.} \end{cases}$$

Express  $\operatorname{des}_{n,r} = \sum_{i=1}^n X_i$  so that

$$\det^k_{n,r} = \sum_{a_1,\ldots,a_k \in \{1,2,\ldots,n\}} X_{a_1} \cdots X_{a_k}.$$

Proving Theorem 5 for  $\mathbf{des}_{n,r}$  reduces to showing that when  $\lambda$  has no cycles of lengths  $1,2,\ldots,2k$ ,

$$\mathbb{E}[X_{a_1}\cdots X_{a_k}] = \mathbb{E}[X_{a_1}\cdots X_{a_k} \mid C_{\lambda}].$$

# Proof by Example: Expectation of Descents on $\mathfrak{S}_{n,r}$

The statistic  $X_1X_5X_6$  on  $\mathfrak{S}_{7,3}$  takes value 1 on permutations

$$\left[\begin{smallmatrix} 1^{[0]} & 2^{[0]} & 3^{[0]} & 4^{[0]} & 5^{[0]} & 6^{[0]} & 7^{[0]} \\ i_1^{[c_1]} & i_2^{[c_2]} & i_3^{[c_3]} & i_4^{[c_4]} & i_5^{[c_5]} & i_6^{[c_6]} & i_7^{[c_7]} \end{smallmatrix}\right]$$

when the images within the blocks  $\mathscr{B}_1=\{1^{[0]},2^{[0]}\}$ ,  $\mathscr{B}_2=\{3^{[0]}\}$ ,  $\mathscr{B}_3=\{4^{[0]}\}$ , and  $\mathscr{B}_4=\{5^{[0]},6^{[0]},7^{[0]}\}$  are in decreasing order.

Define  $\mathfrak{S}_{\mathscr{B}_1}$  to be the permutations on  $\mathscr{B}_i$ , and let  $\mathfrak{S}_{\mathscr{B}_1} \times \mathfrak{S}_{\mathscr{B}_2} \times \mathfrak{S}_{\mathscr{B}_3} \times \mathfrak{S}_{\mathscr{B}_4}$  act on  $\mathfrak{S}_{7,3}$  by right multiplication. One can show that each orbit

- $\bullet$  has size  $2!\cdot 1!\cdot 1!\cdot 3!,$  and
- contains exactly one element satisfying the decreasing order conditions.

Consequently,  $\mathbb{E}[X_1X_5X_6] = \frac{1}{2!\cdot 1!\cdot 1!\cdot 3!}$ 

#### Proof by Example: Expectation of Descents on $C_{\lambda}$

Consider  $X_1X_5X_6$  on  $C_{((7),\emptyset,\emptyset)}$ , which has no cycles of lengths 1,2,3,4,5,6. Let  $\mathfrak{S}_{\mathscr{B}_1}\times\mathfrak{S}_{\mathscr{B}_2}\times\mathfrak{S}_{\mathscr{B}_3}\times\mathfrak{S}_{\mathscr{B}_3}$  act on  $C_{((7),\emptyset,\emptyset)}$  by conjugation. One orbit is shown below.

$$\begin{array}{lll} (1^{[1]}3^{[0]}5^{[2]}6^{[0]}2^{[1]}4^{[0]}7^{[2]}) & (2^{[1]}3^{[0]}5^{[2]}6^{[0]}1^{[1]}4^{[0]}7^{[2]}) \\ (1^{[1]}3^{[0]}5^{[2]}7^{[0]}2^{[1]}4^{[0]}6^{[2]}) & (2^{[1]}3^{[0]}5^{[2]}7^{[0]}1^{[1]}4^{[0]}6^{[2]}) \\ (1^{[1]}3^{[0]}6^{[2]}5^{[0]}2^{[1]}4^{[0]}7^{[2]}) & (2^{[1]}3^{[0]}6^{[2]}5^{[0]}1^{[1]}4^{[0]}7^{[2]}) \\ (1^{[1]}3^{[0]}6^{[2]}7^{[0]}2^{[1]}4^{[0]}5^{[2]}) & (2^{[1]}3^{[0]}6^{[2]}7^{[0]}1^{[1]}4^{[0]}5^{[2]}) \\ (1^{[1]}3^{[0]}7^{[2]}5^{[0]}2^{[1]}4^{[0]}6^{[2]}) & (2^{[1]}3^{[0]}7^{[2]}5^{[0]}1^{[1]}4^{[0]}6^{[2]}) \\ (1^{[1]}3^{[0]}7^{[2]}6^{[0]}2^{[1]}4^{[0]}5^{[2]}) & (2^{[1]}3^{[0]}7^{[2]}6^{[0]}1^{[1]}4^{[0]}5^{[2]}) \end{array}$$

One can show that each orbit

- has size  $2! \cdot 1! \cdot 1! \cdot 3!$ , and
- contains exactly one element satisfying the decreasing order conditions.

Consequently,  $\mathbb{E}[X_1 X_5 X_6 \mid C_{((7),\emptyset,\emptyset)}] = \frac{1}{2! \cdot 1! \cdot 1! \cdot 3!}$ 

## **Key Lemma for Descents**

**Lemma 7.** Suppose  $C_\lambda$  contains no cycles of lengths  $1,2,\ldots,2k$ . Let  $\mathscr{B}_1,\ldots,\mathscr{B}_t$  be the blocks induced by the decreasing conditions needed for descents at  $a_1,\ldots,a_k$ , where  $\mathscr{B}_t$  contains n. If  $n \notin \{a_1,\ldots,a_k\}$ , then

$$\mathbb{E}[X_{a_1} \dots X_{a_k}] = \frac{1}{\prod_{i=1}^t |\mathscr{B}_j|!} = \mathbb{E}[X_{a_1} \dots X_{a_k} \mid C_{\lambda}],$$

If  $n \in \{a_1, \ldots, a_k\}$ , then

$$\mathbb{E}[X_{a_1}\dots X_{a_k}] = \left(\frac{r-1}{r}\right)^{|\mathscr{B}_t|} \cdot \frac{1}{\prod_{i=1}^t |\mathscr{B}_j|!} = \mathbb{E}[X_{a_1}\dots X_{a_k} \mid C_{\boldsymbol{\lambda}}],$$