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Approach for Descents

Theorem 1 (Fulman '98). Let C be a conjugacy class of &, with no cycles of lengths
1,2,...,2k. Then the k-th moments of the descent and major index statistics on &,, align
with the respective k-th moments on C'y.

Corollary 2 (Fulman '98). Let C', be a conjugacy class of &,, such that for all 4, the number of
cycles of length 4 in A,, approaches O as n — oo. Then the distributions of the descent and

major index statistics on C , are asymptotically the same as their distributions on &, (and hence
normal).

Example

The distributions of descents on &5, C(s), & 15, and C(y5) are shown below.

Colored Permutation Groups

Consider r copies of the integers {1, 2, . . ., n}, each colored by an element in Z,.:
{iie{1,2,...,n},[d €z }.
The colored permutation group & ,, . consists of permutations on this set satisfying the condition
ifw (i) = 419, then w (") = 51 forall [n] € 2,

When r = 1, &, ; is isomorphic to &,,, and when » = 2, &,, » is isomorphic to the signed
symmetric (or hyperoctahedral) group B, .

Example

A colored permutation w € &5 4 can be expressed in two-line and one-line notations by speci-
fying the images of the elements with color [0]:

[1[0] 2[0] 3[0] 4l0] 5[0]:|
w =

Al gla] 1ia] gt o | = (4781 EI3M20

A colored permutation can also be expressed in the two-line and one-line cycle notations:

iIBIZIBIETIA OITG (W30 1030y (581501
‘“2(4[11 g 101 ) | gl guy ) = (47371 (57200,

Colored Cycle Type

In the cycle notation of w € &, .., the color of a cycle is the sum of the colors that ap-
pear in the cycle (as an element in Z,.). The cycle type of w is the r-tuple of partitions XA =
AT XD X1y where A€ records cycle lengths for the cycles of color [¢] in w.

Example

The cycle type of w = (41311181 (5B120y is X = ((2), (3), 0, 0).

Conjugacy Classes

Fact. Two elements in &, ;. are in the same conjugacy class if and only if they share the same
cycle type.

Notation. For any r-tuple of partitions A of n, C denotes the conjugacy class consisting of
colored permutations in &, - with cycle type .

The descent set of w € S, . is

Des,, . (w) = {i € {1,2,...,n} 1w (i) > w (G+ D)}
where > is with respect to the ordering
1100 < 2l 3100 g ol 3l
and the convention that (n 4 1)[% is a fixed point.

= The descent statistic is des,, »(w) = | Des, »(w)].

= The major index statistic is maj,, ,.(w) = ZiGDes ()Aln—1] .

* The color statistic col,, - (w) is the sum (in Z) of the colors in the one-line notation.
= The flag major index statistic is fmaj,, ,.(w) = r - maj,, ,.(w) + col, . (w)

Example

<1l colr=tl gl o

The descent set of

1001 5[0] 0] 400] glo] glol 7lo] glol 1] 10] (0] (1) 2] « (2] (0] 1)
w = [3[11 5001 5001 g1l o2 1[2] 4l0] 7| = [3787576 20 1FATTH] € Gy 3

is {1, 2, 5, 6, 8}. For the statistics above, we find
dess 3(w) = 5, majs 5(w) = 14, colg 3(w) = 7, and fmajs g(w) = 3 - 14 + 7 = 49.

Classical Permutation Statistics

When r = 1, des,, 1 and fmaj,, ; reduce to the descent and major index statistics on &,.

Known Asymptotical Distributionson G, .

Theorem 3 (Chow & Mansour '12). The distribution of des,, , has mean ., , = % has
variance 0721 .= % and is asymptotically normal.

Theorem 4 (Chow & Mansour '12). The distribution of fmayj,, ,. has mean g, , = W

) 208 1322 (2 . )
has variance 02 = W. and is asymptotically normal.

Main Results

Theorem 5 (Liu & Yin '25+). Let C'y be a conjugacy class of &, ,. with no cycles of lengths

1,2,...,2k. Then the k-th moments of des,, , and fmaj,, . on &, align with the respective
k-th moments on Cx.

Corollary 6 (Liu & Yin '25+). Let Cx be a conjugacy class of &, ,. such that for all 4, the number
of cycles of length 4 (of any color) in A,, approaches O as n — oo. Then the distributions of

des,, . and fmaj,, ,. on Cy, are asymptotically the same as their distributions on &, . (and
hence normal).

References

[1] R. Adin and Y. Roichman. The flag major index and group actions on polynomial rings. European Journal of
Combinatorics, 22:431-446, 05 2001.

[2] C.-O. Chow and T. Mansour. Asymptotic probability distributions of some permutation statistics for the wreath
product C,. ¢ S,,. Online Analytic Journal of Combinatorics, 7:Article #2, 12 2012.

[3] J. Fulman. The distribution of descents in fixed conjugacy classes of the symmetric groups. J. Combin. Theory Ser. A,
84(2):171-180, 1998.

[4] K. Liu and M. Yin. Descents and flag major index on conjugacy classes of colored permutation groups without short
cycles, 2025. arxiv:2503.02990.

[5] E. Steingrimsson. Permutation statistics of indexed permutations. European Journal of Combinatorics,
15(2):187-205, 1994.

Series and Al

c Combinat

(FPSAC) 2025

Define X; : &,,,. — R to be the indicator function for a descent at position 1,
1 ifieD
X, (w) = ifi € : esy, (W)
0 otherwise.
Express des,, . = > X; sothat

desy, . = > Xay ++ Xay-

@y, ak€{1,2,...,n}

Proving Theorem 5 for des,, , reduces to showing that when X has no cycles of lengths
1,2,...,2k,

B[Xa, -+ Xa,] = E[Xq, -+ Xq, | Cal-

Proof by Example: Expectation of Descentson G, ;-

The statistic X1 X5 X on &7 5 takes value 1 on permutations
[ 1001 glo] ' g[o] ' 4l0] * glo] glo] (o] ]

dlerl glea] 1 sles) 1 ilea 1 aleal gleal gler]

when the images within the blocks 28, = {1[%, 201} @, = {319} 2, = {4[9} and
B, = {5!°, 6%, 7191} are in decreasing order.

Define & g, to be the permutations on 28;, andlet & , X Sz, X Sz, X & g, acton
S 7,3 by right multiplication. One can show that each orbit

= hassize 2! - 1! - 1! - 3! and
= contains exactly one element satisfying the decreasing order conditions.

Consequently, E[X; X5 X¢] = m

Proof by Example: Expectation of Descents on C»

Consider X1 X5 X6 on C(7),p,0), which has no cycles of lengths 1, 2, 3,4, 5, 6. Let & g5, x
Sz, X Sg, X &g, acton C(r),9,9) by conjugation. One orbit is shown below.

(1[11gl0T5[21 g0l 2111 401 712]
(1011530005121 710] 911 4 0] g 21
(1113107621 5[0 2111 401 712]
(111310l g2 7101 3(1l 4[0 5121
(101153000 7121 501 911 4 0] g [21)
(1[11gll7[21 g0l 21t 40 512]

One can show that each orbit

(2113107 5[21gl01 1 (1] 4l01 712])
(2113101 5[21 71011 [1] 4[0] 6121y
(2113076215011 (1] 4l01 712T)
(2131006217101 1 (1] 4[0] 5121y
(2[1]3[0] 721 5l0] 1[1]4[0]6[2])
(2113101 7[21gl01 1 (1] 4l01 5121

= hassize 2! - 1! - 1! - 3!, and
= contains exactly one element satisfying the decreasing order conditions.

Consequently, E[X1 X5 X6 | C((7),0,0)] = m

Key Lemma for Descents

Lemma 7. Suppose C contains no cycles of lengths 1, 2, ..., 2k. let B,, ..., B be the
blocks induced by the decreasing conditions needed for descents at aq, . . ., ax, Wwhere 9B,
contains n. If n & {ay,...,ar} then

1
E[Xq, ... X, ] = W =E[X,, ... Xq, | Cal,
j=1 1%l

Ifn € {ai,...,ar} then

r—1)% 1
]E[Xal...Xa]:( ) e —E[X,, ...
g r I, 1%

Xa, | CAl
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