On some Grothendieck expansions

Eric MARBERG Hong Kong University of Science and Technology, Jiayi WEN[†] University of Southern California

Setting and motivation

Let $GL_n = GL_n(\mathbb{C})$ with Borel subgroup B of lower-triangular matrices.

Let S_n be the symmetric group on $\{1,\ldots,n\}$, and set $s_i=(i,i+1)\in S_n$.

- The complete flag variety GL_n/B has a decomposition into Schubert cells BwB/B. The Schubert classes $[X_w] = [Bw_0wB/B]$ ($w \in S_n$) form a basis for $H^*(\operatorname{GL}_n/B)$.
- A subgroup $H \leq \operatorname{GL}_n$ is spherical if H acts on GL_n/B with finitely many orbits. Brion (2001) proved that if H is spherical and $\mathcal{O} \subset \operatorname{GL}_n/B$ is an H-orbit, then $[\overline{\mathcal{O}}] = \sum_{w \in \mathcal{A}(\mathcal{O})} 2^{d_{\mathcal{O}}(w)} [X_w] \in H^*(\operatorname{GL}_n/B)$ where $\mathcal{A}(\mathcal{O}) \subseteq S_n$ and $d_{\mathcal{O}}(w) \in \mathbb{Z}_{>0}$ are defined via an explicit weak order graph.
- We want to find a K-theory analog when $H=\mathrm{O}_n:=\{g\in\mathrm{GL}_n\mid g^{-1}=g^\dagger\}$.

Demazure product and orthogonal orbits

The Demazure product is the unique associative product $\circ: S_n \times S_n \to S_n$ such that $w \circ s_i = ws_i$ if w(i) < w(i+1) and $w \circ s_i = w$ if w(i) > w(i+1).

 O_n -orbits in GL_n/B are indexed by $I_n:=\{z\in S_n\mid z=z^{-1}\}$ and form a digraph:

- the unique source is the orbit indexed by z=1,
- edges are $\mathcal{O}_z \xrightarrow{s_i} \mathcal{O}_{s_i \circ z \circ s_i}$ if z(i) < z(i+1), doubled if i = z(i) & i+1 = z(i+1).

In Brion's formula $\mathcal{A}(\mathcal{O}_z)$ is set of $w=s_{i_1}\cdots s_{i_k}$ arising from paths $\mathcal{O}_1 \xrightarrow{s_{i_1}} \cdots \xrightarrow{s_{i_k}} \mathcal{O}_z$.

The integer $d_{\mathcal{O}_z}(w)$ is the number of doubled edges in any such path.

Algebraic K-theory and Grothendieck polynomials

We consider the algebraic K-theory of coherent sheaves on GL_n/B .

- Lascoux (1990): for $w \in S_n$, the Grothendieck polynomials $\mathcal{G}_w \in \mathbb{Z}[x_1, \cdots, x_n]$ are computed inductively with the base case $\mathcal{G}_{n...321} = x_1^{n-1}x_2^{n-2}\cdots x_{n-1}$ and a certain K-divided difference formula $\partial_i^K \mathcal{G}_w = \mathcal{G}_{ws_i}$ when w(i) > w(i+1).
- The (K-theory) Schubert classes $[X_w] := [i_*\mathcal{O}_{X_w}]$ form a basis for $K(\mathrm{GL}_n/B)$. Each \mathcal{G}_w represents $[X_w] \in K(\mathrm{GL}_n/B) \cong \mathbb{Z}[x_1, \cdots, x_n]/I\Lambda_n$.

M.-Pawlowksi introduced orthogonal Grothendieck polynomials $\mathcal{G}_z^{\mathsf{O}} \in \mathbb{Z}[x_1, \cdots, x_n]$ that represent the K-theory classes of the O_n -orbit closures $\overline{\mathcal{O}}_z$ for $z \in I_n$.

• No general algebraic formula for \mathcal{G}_z^0 except when z is vexillary (2143-avoiding):

Theorem [M.-W. (2024)]

The orthogonal Grothendieck polynomials $\mathcal{G}_z^{\mathbf{0}}$ for $z \in I_n^{ ext{vex}}$ satisfy

$$\mathcal{G}_{n\cdots 321}^{\mathsf{O}} = \prod_{1 \leq i \leq j \leq n-i} (x_i + x_j - x_i x_j) \text{ and } \partial_i^K \mathcal{G}_{s_i z s_i}^{\mathsf{O}} = \mathcal{G}_z^{\mathsf{O}} \text{ if } \begin{cases} \ell(z) < \ell(s_i z s_i) \text{ and } \\ s_i z s_i \in I_n^{\mathrm{vex}}. \end{cases}$$

Results of Brion imply that for each $z \in I_n^{\text{vex}}$ there is a map $GC_z^{\mathbf{O}}: S_{n+1} \to \mathbb{Z}_{\geq 0}$ with $\mathcal{G}_z^{\mathbf{O}} = \sum_{w \in S_{n+1}} (-1)^{\ell(w) - \ell_{\text{inv}}(z)} \cdot GC_z^{\mathbf{O}}(w) \cdot \mathcal{G}_w.$

Our main goal: understand the function GC_{r}^{0} , which can be very complicated.

Involution Grothendieck polynomials

- Knutson (2009): If $\mathcal O$ is multiplicity-free, then $[\overline{\mathcal O}] = \sum_{w \in \mathcal P} \mu_w[X_w] \in K(\mathrm{GL}_n/B)$.
- The O_n -orbits are not multiplicity-free except when z=1, but the right-hand side of Knutson's formula still has nice properties and approximates \mathcal{G}_z^{O} when z is vexillary.
- Let $\mathcal{B}_{\mathsf{inv}}(z) := \{ w \in S_n \mid w^{-1} \circ w = z \}$ and $\ell_{\mathsf{inv}}(z) := \min\{\ell(w) \mid w \in \mathcal{B}_{\mathsf{inv}}(z) \}$.
- The set $\mathcal{B}_{\mathsf{inv}}(z)$ consists of inverses of a single equivalence class for the relation with $\cdots cba \cdots \sim cab \cdots \sim bca \cdots$ when a < b < c.
- For $z\in I_n$ define $\widehat{\mathcal{G}}_z:=\sum_{w\in\mathcal{B}_{\mathsf{inv}}(z)}(-1)^{\ell(w)-\ell_{\mathsf{inv}}(z)}\mathcal{G}_w$.

Theorem [M.-W. (2024)]

The involution Grothendieck polynomials $\widehat{\mathcal{G}}_z$ for $z \in I_n$ have the inductive formula $\widehat{\mathcal{G}}_{n \cdots 321} = \prod_{1 \leq i \leq n-i} x_i \prod_{1 \leq i < j < n-i} (x_i + x_j - x_i x_j)$ and $\partial_i^K \widehat{\mathcal{G}}_{s_i \circ z \circ s_i} = \widehat{\mathcal{G}}_z$ if z(i) < z(i+1).

Main Theorem [M., W. (2024)]

If $z \in I_n^{\text{vex}}$ then there are explicit polynomials $\theta_{yz} \in \mathbb{Z}[1-x_i \mid i < z(i)]$

$$\mathcal{G}_z^{\mathsf{O}} = \sum_{y \in I_n} (-1)^{\ell_{\mathsf{inv}}(y) - \ell_{\mathsf{inv}}(z)} \cdot \theta_{yz} \cdot \widehat{\mathcal{G}}_y.$$

We have $\theta_{yz} \in \mathbb{Z}_{\geq 0}[1-x_i \mid i < z(i)]$ if it never holds that i < z(i) and i+1 < z(i+1).

Pieri chains and conjectural support

- A k-Pieri chain from $v \in S_n$ to $w \in S_n$ is a sequence $v = v_0 \xrightarrow{(a_1,b_1)} v_1 \xrightarrow{(a_2,b_2)} \cdots \xrightarrow{(a_q,b_q)} v_q = w$ satisfying $1 \le a_i \le k < b_i$ for all i, along with the conditions $b_1 \ge b_2 \ge \cdots \ge b_q \quad \text{and} \quad j < i \text{ and } a_j = a_i > a_{i+1} \implies b_i > b_{i+1}.$
- Lenart–Sottile (2006): at most one such chain exists between any v and w. We write $v \xrightarrow{[k]} w$ if this occurs.

For $z \in I_n$ let $k_z = |\{i \mid i < z(i)\}|$ and

$$\mathcal{B}^+_{\mathsf{inv}}(z) := \{ w \in S_{n+1} \mid v \xrightarrow{[k_z]} w \text{ for some } v \in \mathcal{B}_{\mathsf{inv}}(z) \}.$$

Thm (M.-W.): If $z \in I_n^{\text{vex}}$ has i < z(i) for all $i \le k_z$ then $\operatorname{supp}(GC_z^0) \subseteq \mathcal{B}^+_{\text{inv}}(z)$.

Conjecture: $\operatorname{supp}(\operatorname{GC}_{w_0}^{\mathsf{O}}) = \mathcal{B}_{\operatorname{inv}}^+(w_0)$ for the longest element $w_0 = n \cdots 321 \in I_n$. Example shows elements of $\mathcal{B}_{\operatorname{inv}}(w_0)$ and $\mathcal{B}_{\operatorname{inv}}^+(w_0)$ for $w_0 = 4321$, and values of $\operatorname{GC}_{w_0}^{\mathsf{O}}$.

Grothendieck polynomials and stable limits

For $n \in \mathbb{Z}_{>0}$ and $w \in S_{\infty}$, let $1^n \times w(i) := w(i-n) + n$ if i > n, and i otherwise.

- Fomin-Kirillov (1994): the stable limit $G_w:=\lim_{n o\infty}\mathcal{G}_{1^n imes w}$ is symmetric.
- Buch (2002): $\{G_w: w \text{ is vexillary}\}$ is a \mathbb{Z} -basis for the ring \mathbb{Z} -span $\{G_w: w \in S_\infty\}$.

If $z \in I_n$ then define $GP_z := \lim_{n \to \infty} \widehat{\mathcal{G}}_{1^n \times z} = \sum_{w \in \mathcal{B}_{\mathsf{inv}}(z)} (-1)^{\ell(w) - \ell_{\mathsf{inv}}(z)} G_w$.

• M. (2020): $\{GP_z:z\in I_\infty^{\mathrm{vex}}\}$ is a \mathbb{Z} -basis for the ring \mathbb{Z} -span $\{GP_z:z\in I_\infty\}$ and recovers Ikeda-Naruse's K-theoretic Schur P-functions.

Orthogonal stable limits

For $z \in I_n^{\mathrm{vex}}$ define $GQ_z := \lim_{n \to \infty} \mathcal{G}_{1^n \times z}^{\mathsf{O}}$.

Thm (M.-W.). If z(1) = 1 then $GQ_z = \sum_{w \in S_{n+1}} (-1)^{\ell(w) - \ell_{\text{inv}}(z)} \operatorname{GC}_z^{\mathsf{O}}(w) G_w$.

- Lewis–M. (2021): the set $\{GQ_z \mid z \in I_{\infty}^{\text{vex}}\}$ is a \mathbb{Z} -basis for the ring it generates.
- It is open to find a formula for the multiplicative structure constants of this ring.
- M.–Pawlowski (2020): $\{GQ_z \mid z \in I_n^{\text{vex}}\}$ recovers Ikeda–Naruse's GQ-functions.
- Taking the stable limit of our main theorem recovers an identity of Chiu–M. (2023): $GQ_{\lambda} = \sum_{\nu} (-1)^{\#\text{columns}(\nu/\lambda)} \cdot 2^{\ell(\lambda) |\nu/\lambda|} \cdot GP_{\nu}.$