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The irreducible polynomial representations V; of GL,C are indexed by the set of partitions Analogous to the Horn’s inequalities, S. Gao, G. Orelowitz and A. Yong [2, Theorem 1.3] defined
Parp:=A= (A, -, An) €Z"| Ay > --- = Ap > 0}, (1) extended Horn inequalities and proved that they are necessary conditions for Ny ,, , > 0.
Additionally, they conjectured the converse; The Main Theorem confirms this conjecture, due to [3,
For each u, v € Parp, X Corollary 8.5].
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AcParp Secondly, combined with [3, Proposition 3.1] proved by S. Gao, G. Orelowitz, N. Ressayre and
The tensor product multiplicities ¢}, ., are the Littlewood-Richardson(LR) coefficients. A. Yong, we complete an analogue of the Horn problem for matrices In spa,C Mgl

Lastly, let G = SO5,,1C, Sp,,C, SOo,C. Suppose A, u, v € Parp and I(p) + /(v) < n. Then as a

‘ corollary, we have
LR SATURATION THEOREM s —— Sk € N'suchthat of} ,,(G) >0 = c},(G) >0 ®

This gives partial answer to [5, Conjecture 1.4] and [7, Section 7].

Let A, u, v € Pary. Then

Jk € N suchthatcgh >0 = chy>0. (3)

This is LR saturation proved by A. Knutson and T. Tao [7]. They used honeycombs, which are SKETCH OF PROOF

combinatorial objects counting LR coefficients.

Unlike LR saturation, NL saturation needs parity condition |A| + |u| + |v| = 0 (mod 2). Surprisingly,
this is related to the fact that Mobius strip may have non-orientable loops.
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Figure: Sliding an orientable loop.

a CONSEQUENCES OF LR SATURATION Figure: Breaking a non-orentable loop

The significance of the saturation theorem stems from Horn’s conjecture [4] which gives a
recursive description of linear inequalities, called Horn’s inequalities, on the eigenvalues of n x n

Hermitian matrices A, B and A + B. LR saturation combined with earlier work of A. A. Klyachko [6] EXAMPLE - CQU NTING N L N UMBERS

proved Horn’s conjecture.
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Define Newell-Littlewood(NL) numbers

N?\,u,v = Z cg,yci‘,acgcﬁ (A, u, v € Parp). (4)
x,3, yEParp

ExAMPLE: HONEYCOMBS

In terms of honeycombs, LR saturation can be written as follows: If red edges have integer length,
IS it possible to modify black edges so that all edges have integer length? The answer is yes,
according to [7].

Figure: Honeycombs: Modify black edges while fixing red ones.
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For each A € Parp, let |A| .= A1 +---+ Ap. |If ci‘w # 0, then |y + |v| = |Al. According to [1, Lemma
2.2],

W+VI=A = My =Ccly (5)
Thus, NL numbers generalize LR coefficients.

Let G = SO2,.1C, Sp,,C, SOo,C. Write ci‘w(G) as tensor product multiplicities with respect to G.
I(A) denotes the number of non-zero components of A = (Aq,--- ,Ap). According to [8, Theorem
3.1],

W +Iv)<n = Nyuy=Ccliv(G). (6)

The condition imposed on u, v € Parp, is called the stable range.

a MAIN THEOREM (NL SATURATION) m

Let A\, i, v € Parp, satisfying |A| + |u| + |v| = 0 (mod 2). Then

Jk € IN'such that Nyp kv >0 = Ny, >0. (7)
This is Newell-Littlewood saturation proved by M. in [9]. M. used Mobius honeycombs, which
are combinatorial objects counting NL numbers. Figure: Combining three honeycombs to construct a Mdébius honeycomb on a Mébius strip.

ExamPLE: MoBius HONEYCOMBS
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