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Abstract

We define a multivariable generalization of the Eulerian polynomials using linear and descent based

statistics of permutations and establish the connection with the (α, t)-Eulerian polynomials based on

cyclic and excedance based statistics of permutations. As applications of this connection, we obtain

the exponential generating function for the multivariable Eulerian polynomials and γ-positive formulas

of two variants of Eulerian polynomials. We also show that enumerating the cycle André permutations

with respect to the number of drops, fixed points and cycles gives rise to the normalised γ-vectors of
the (α, t)-Eulerian polynomials. Our result generalizes and unifies several recent results in the literature.

Introduction

For any positive integer n, we denote the symmetric group of [n] := {1, 2, . . . , n} by Sn. For σ ∈ Sn,

the integer i ∈ [n − 1] is called a descent (des) if σ(i) > σ(i + 1); an ascent (asc) if σ(i) < σ(i + 1); an
excedance (exc) if i < σ(i). It is well-known that the Eulerian polynomials An(x) have the following

combinatorial interpretations:

An(x) :=
∑

σ∈Sn

xasc(σ) =
∑

σ∈Sn

xdes(σ) =
∑

σ∈Sn

xexc(σ). (1)

Let Mn be the set of permutations σ ∈ Sn such that the first descent (if any) of σ appears at

σ−1(n). The binomial-Eulerian polynomials were introduced by Postnikov, Reiner, and Williams as the

h-polynomials of stellohedrons, and can also be defined as in the following

Ãn(x) :=
∑

σ∈Mn+1

xdes(σ) = 1 + x

n∑
m=1

(
n

m

)
Am(x). (2)

It is well-knownthat the Eulerian polynomials An(x) have the following γ-positive expansion

An+1(x) =
bn/2c∑
j=0

γn,j xj(1 + x)n−2j =
bn/2c∑
j=0

2jdn,j xj(1 + x)n−2j, (3)

where γn,j is the number of permutations without double descents having j descents inSn+1 and dn,j
is the number of André permutations with j descents in Sn+1. It is also known that the polynomials

Ãn(x) have the following gamma positive formula

Ãn(x) =
bn/2c∑
j=0

γ̃n,j xj(1 + x)n−2j, (4)

where γ̃n,j is the number of σ ∈ Mn+1 such that σ has j descents and no double descents. For

σ ∈ Sn, an index i ∈ [n] is a drop (drop) of σ if i > σ(i); a fixed point (fix) of σ if i = σ(i). We shall also

consider a permutation σ ∈ Sn as a word σ = σ1 . . . σn with σi := σ(i) for i ∈ [n]. Say that a letter σi
is a left-to-right maximum (lrmax) of σ if σi > σj for every j < i; a right-to-left maximum (rlmax) of σ if

σi > σj for every j > i.

In the middle of 1970’s Carlitz-Scoville considered several multivariate Eulerian polynomials, among

which are the so-called (α, β)-Eulerian polynomials

An(x, y | α, β) :=
∑

σ∈Sn+1

xasc(σ)ydes(σ)αlmax(σ)−1βrmax(σ)−1, (5a)

and the following (α, t)-Eulerian polynomials,

A
cyc
n (x, y, t | α) :=

∑
σ∈Sn

xexc(σ)ydrop(σ)tfix(σ)αcyc(σ), (5b)

where cyc(σ) denotes the number of cycles of σ.

For a permutation σ = σ1 . . . σn ∈ Sn, we say that an index i ∈ [n] is a cycle peak (cpk) of σ if σ−1(i) <
i > σ(i); cycle valley (cval) of σ if σ−1(i) > i < σ(i); cycle double ascent (cda) of σ if σ−1(i) < i < σ(i);
cycle double descent (cdd) of σ if σ−1(i) > i > σ(i). Note that cpk(σ) = cval(σ).

Theorem 1

If xy = u1u2 and x + y = u3 + u4, then

A
cyc
n (x, y, t | α) =

∑
σ∈Sn

(u1u2)cpk(σ)ucda(σ)
3 u

cdd(σ)
4 tfix(σ)αcyc(σ). (6)

Let σ = σ1 . . . σn ∈ Sn with the boundary condition 0 − 0. A letter σi ∈ [n] is a

left-to-right-maximum-peak (lmaxpk) if σi is a left-to-right maximum and also a peak;

right-to-left-maximum-peak (rmaxpk) if σi is a right-to-left maximum and also a peak;

left-to-right-maximum-double-ascent (lmaxda) if σi is a left-to-right maximum and also a double

ascent;

right-to-left-maximum-double-descent (rmaxdd) if σi is a right-to-left maximum and also a double

descent.

Let u = (u1, u2, u3, u4) and define the generalized Eulerian polynomial

An(u, f, g, t | α, β) =
∑

σ∈Sn+1

(u1u2)val(σ)uda(σ)
3 u

dd(σ)
4 f lmaxpk(σ)−1grmaxpk(σ)−1

× tlmaxda(σ)+rmaxdd(σ)αlmax(σ)−1βrmax(σ)−1.

The following is our second main result.

Theorem 2

If xy = u1u2 and x + y = u3 + u4, then

An(u, f, g, t | α, β) = A
cyc
n

(
x, y,

αu3 + βu4
αf + βg

t | αf + βg

)
. (7)

Sketch of the proof

We prove Theorem 1 by combining a variant of Foata’s fundamental transformationwith cyclic valley

hopping and Theorem 2 by establishing a bijection.

A symmetric (α, t)-Eulerian identity

Define two kinds of (α, t)-Eulerian numbers as follows:〈
n

k

〉exc

α,t
:=

∑
σ∈Sn

exc(σ)=n−k

αcyc(σ)tfix(σ) (1 ≤ k ≤ n), (8a)

and 〈
n

k

〉asc

α,t
:=

∑
σ∈Sn

asc(σ)=n−k

αrmax(σ)trmaxdd(σ) (1 ≤ k ≤ n). (8b)

It is easy to see that A
cyc
n (x, y, t(x + y) | α) is symmetric in x and y because the involution ϑ : σ 7→ σ−1

for σ ∈ Sn satisfies (exc, drop, fix) σ = (drop, exc, fix) σ−1. We have the following (α, t)-analog of

Chung-Graham-Knuth’s symmetric Eulerian identity.

Theorem 3

For integers a, b ≥ 0, we have 〈
n

k

〉
α,t

:=
〈

n

k

〉exc

α,t
=
〈

n

k

〉asc

α,t
, (9a)

and ∑
k≥0

(αt)a+b−k

(
a + b

k

)〈
k

a

〉
α,t

=
∑
k≥0

(αt)a+b−k

(
a + b

k

)〈
k

b

〉
α,t

, (9b)

where
〈0

k

〉
α,t

=
〈

k
0
〉

α,t
= δk,0.

γ-positivity of (α, t)-Eulerian polynomials

Define the (α, t)-Eulerian polynomials An(x, y, t | α) and the (α, t)-binomial-Eulerian polynomials

Ãn(x, y, t | α) by, respectively,

An (x, y, t | α) :=
∑

σ∈Sn+1

xasc(σ)ydes(σ)tlmaxda(σ)+rmaxdd(σ)αlmax(σ)+rmax(σ)−2, (10)

Ãn(x, y, t | α) =
∑

σ∈Mn+1

xasc(σ)ydes(σ)tlmaxda(σ)+rmaxdd(σ)αlmax(σ)+rmax(σ)−2. (11)

From Theorem 1 and 2, we derive the following combinatorial interpretations of the coefficients in the

γ-expansion of An(x, y, t | α) and Ãn(x, y, t | α).

Theorem 4

For 0 ≤ j ≤ bn/2c, we have

An(x, y, t | α) =
bn/2c∑
j=0

γn,j(α, t)(xy)j(x + y)n−2j, (12a)

Ãn(x, y, t | α) =
bn/2c∑
j=0

γ̃n,j(α, t)(xy)j(x + y)n−2j, (12b)

where

γn,j(α, t) =
∑

σ∈Sda=0
n+1,asc=j

αlmax(σ)+rmax(σ)−2trmaxdd(σ) (13a)

=
∑

σ∈Scda=0
n,exc=j

2cyc(σ)−fix(σ)αcyc(σ)tfix(σ); (13b)

and

γ̃n,j(α, t) =
∑

σ∈Mda=0
n+1,asc=j

αrmax(σ)−1trmaxdd(σ) =
∑

σ∈Scda=0
n,exc=j

αcyc (σ)tfix(σ). (13c)

with X st1=0
n,st2=j := {σ ∈ Sn : st1(σ) = 0 and st2(σ) = j} for X ∈ {S, M}.

γ-vetcor of (α, t)-Eulerian polynomials and cycle André permutations

For 0 ≤ j ≤ bn/2c, let dn,j(α, t) = γn,j(α, t)/2j , then, Eq. (12a) reads

An(x, y, t | α) =
bn/2c∑
j=0

2jdn,j(α, t)(xy)j(x + y)n−2j. (14)

For a fixed x ∈ [n], say that σ ∈ Sn is an André permutation of the first kind (resp. second kind) if σ
has no double descents, i.e., σi−1 > σi > σi+1, and each factorisation u λ(x) x ρ(x) v of σ has property

λ(x) = ∅ if ρ(x) = ∅,
max(λ(x)) < max(ρ(x)) (resp. min(ρ(x)) < min(λ(x))) if λ(x) 6= ∅,

where λ(x) and ρ(x) are the the maximal contiguous subword immediately to the left (resp. right) of

x whose letters are all greater than x. Let A1
n (resp. A2

n) be the set of André permutations of the first

(resp. second) kind in Sn. A right-to-left minimum (rmin) of σ is an element σi such that σj > σi if

j > i. A letter σi ∈ [n] is a right-to-left-minimum-da (rminda) of σ if it is a double ascent and σi is a

rmin. Let C = (a1, . . . , ak) be a cycle of A with a1 = min{a1, . . . , ak}. Then, cycle C is called an André

cycle if the word a2 . . . ak is an André permutation of the first kind. We say that a permutation is a

cycle André permutation if it is a product of disjoint André cycles. Let CAn be the set of cycle André

permutations of [n].

Theorem 5

For 0 ≤ j ≤ bn/2c, we have

dn,j(α, t) =
∑

σ∈CAn
drop(σ)=j

tfix(σ)αcyc(σ) =
∑

σ∈A(i)
n+1

des(σ)=j

trminda(σ)αrmin(σ)−1, (i = 1, 2). (15)
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