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1 Double-box configurations

Fix a,b, ¢ € N, and identify the point (i, j, k) € Z* with the unit cube (also called box) [i, i + 1] x
[j,j + 1] x [k, k + 1]. Letn = (171,n2,13) be a triple of plane partitions such that 7, is based at the
point (0, b, ¢), 1, is based at (a, 0, ¢), and 3 is based at (a, b, 0) in R3.

Definition 1. We say that a box (i, j, k) is in the intersection space ifi > a,j = b,and k > c. We
denote boxes in the intersection space by 1n¢.

Definition 2. We say that a box

(@0,j,k) €n = (n1,m2,m3) is:

* typelif (i,j, k) € my, and (i,j, k) & nm
for {m,n,1} = {1,2,3}.
type ILif (i, j, k) € Ny, np and (i, k) € my
for {m,n, 1} = {1,2,3}.
type HIif (i, j, k) € 11,12, 13-

Figure 1. Basepoints of plane partitions 171,75, 73 in R3.

For the following definitions, consider triples of plane partitions (1;,1,,73) placed in R? as above.

Definition 3. We say that a triple of plane partitions (7;,1,,73) satisfies the Overlap Condition if
every box in the intersection space 7, is a type Il or a type Il box. Two triples of plane partitions
are called compatible if they have the same multiset of boxes.

Definition 4 ([1]). Let (14,72, 13) be a triple of plane partitions that satisfies the Overlap Condition.
The double-box configuration associated to (11,7, 13) is the multiset of boxes in any triple of
plane partitions compatible with (1,,7,,73). Let DB, - denote the set of all double-box
configurations.
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Figure 2. Examples of 7 € DBy 1 ;. (a) One type Il box at (1,1,1). (b) One type III
box at (1,1,1), two type Il boxes at (1,0,0) and (0,0,1).

Definition 5. The generating function for double-box configurations is given by

2h@= Yy amgh
N€DBgpbc
where 2™ is the number of compatible triples that yield n € DBy, - for some m € N, and || =
#{type I boxes} + #{type Il boxes} + 2#{type IIl boxes}.

Theorem 1. (Gholampour, Kool, Young [1])
225 6(@) = M(@)* Mg, (@)

where ZE'E,C (q) is the generating function for double-box configurations, and
1-gsteir-1

o 1
M@ =TI Mapc(@) = 1% [T [y s
(1-q =

are MacMahon'’s generating functions for plane partitions and boxed a X b X c plane
partitions, respectively.
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Abstract

In [1], Gholampour, Kool, and Young conjecture that the generating function for certain plane partition-like
objects, called double-box configurations, is equal to a product of MacMahon's generating function for
(boxed) plane partitions. In [2], Gholampour and Kool prove this result using geometric methods. We offer a
combinatorial proof of this geometrically motivated result using the double-dimer model. We first give a
correspondence between double-box configurations and double-dimer configurations on the hexagon lattice
with a particular tripartite node pairing. Using this correspondence, we can apply graphical condensation
and double-dimer condensation in our proof.

2 Tripartite double-dimer configurations

Definition 6. A single-dimer configuration on a graph G = (V,E) is a collection of edges E’ € E such that
every vertex in V is covered exactly once. Let N c V be a set of nodes, that is, a special set of defined vertices
(typically on the outer face of G). A double-dimer configuration on G with node set N is a multiset of E
such that each vertex in V' \ N is covered exactly twice, and each node in N is covered exactly once.
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Figure 3. Left: single-dimer configuration on the hexagon graph. Middle: single-dimer
configuration with nodes. Right: double-dimer configuration (loops, doubled edges, paths
between nodes).

Definition 7. Let a, b, c,n € N. Let H(n) be the
hexagon graph of sizen X n X n.Definea
set of nodes N on the boundary of H(n) by

N =R UG U B, where:

R = {anodeson L, closestto A} U
{c nodeson L, closestto A}

G = {cnodeson L closestto C} U
{b nodes on L, closestto C}

B = {bnodeson L closestto B} U
{a nodes on Lg closest to B}

Color the R nodes red, the G nodes green, and
the B nodes blue (see Figure 4).

Figure 4. A double-dimer configuration on H(4) witha = 2,b = 1 and ¢ = 3, and node
set N=RUGUB.

Definition 8. Given a, b, ¢ € N and the node set N defined above, let g, ;, - be the unique planar tripartite
pairing of the nodes (that is, each node is paired with a node of a different color).

Definition 9. Let DD (zrav,,,r) denote the set of all double-dimer configurations on the infinite hexagon
graph such that for each m € DD (ﬂal,,,c), there exists n € N such that 7 restricted to H(n) has the node set
N and the tripartite node pairing o, p, .

Definition 10. Define the generating function for elements in DD (ﬂa'blc) as

B@=lm( Y 2®wm
TEDDn(0ap.c)
where #(1) is the number of closed loops of 7 on H(n) and the configuration o € DDy (dg,,c) has minimal
weight. The weight of a double-dimer configuration is the product of the edge weights of the chosen edges,
where we choose the edge weights of the hexagon graph to reproduce the weighting in Definition 5.

3 Mapping double-box configurations to tripartite double-dimer
configurations

There is a bijection between plane partitions and single-dimer configurations on the hexagon graph
called the folklore bijection.

Figure 5. Folklore bijection between a plane partition n; (leftmost) and
single-dimer configurations on the hexagon graph Dy, (rightmost).

Definition 11. Leta, b,c € N and letn = (11,72,13) € DBg . Superimpose the single-dimer
configurations corresponding to 7,7, and 13 (via the folklore bijection). Denote the triple-dimer
configuration obtained in this way by by T;, (see Figure 6).

(2) Dy, (b) Dy, (c) Dy, (AT

Figure 6. The tripartite triple-dimer configuration (rightmost) corresponding to the
double-box configuration n = (4, 7,,713) from Figure 2a.

Theorem 2. Let a,b,c € Nand letn = (171,7,13) € DBy, .. Removing the single-dimer
configuration corresponding to the plane partition 7;n, based at (a, b, ¢) from T, gives an
element in DD(Ua,b,c) .

Theorem 3. 225 .(q) = 223 .(q)

Proof Sketch of Theorem 1: Z25 .(q) = M(q)*Mqp,c(q)
We show that both sides of Equation 1 satisfy the recurrence relation
X(a,b,c)X(a+1,b+1,¢) =X(a+1,b,c)X(a,b+1,¢)

+q%*P*1X(a +1,b + 1,c — 1)X(a, b, c + 1).

Using Theorem 3, we may replace the left-hand side of Equation 1, Z2% .(q), with Z29 (). Then we
may apply a result of Jenne ([3]), called double-dimer condensation, to show that zg‘,;c(q) satisfies
Equation 2 . The right-hand side of Equation 1, M(q)?M, 5, (q), satisfies the same recurrence by a result
of Kuo ([6]), called graphical condensation. Finally, we show that both sides satisfy the same initial
conditions.
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