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Classical background: orbits in the flag variety

Let G be a connected reductive algebraic group over C. Let B ⊂ G be a Borel subgroup of G.

The well known Bruhat decomposition is G =
⊔
w∈W

BwB, where W is the Weyl group of G.

The coset space G/B is also called the flag variety. So Bruhat decomposition is also about B-orbits in the flag variety.

Now let G = GL(n,C), and B be the Borel subgroup consists of upper triangular matrices in G. In this case
W ' Sn, the group of permutation of n elements.

Let K = O(n,C). Then G =
⊔
w∈I

KwB, where I consists of involutions in Sn.

Let K = Sp(n,C) (n even). Then G =
⊔
w∈I fpf

KwB, where I fpf consists of fixed-point-free involutions in Sn.

Let K = GL(p,C)×GL(q,C) with p+ q = n. Then G =
⊔

w∈C(U(p,q))

KwB, where C(U(p, q)) is the set of (p, q)-clans.

The above K’s satisfy K = Gθ, where θ is a holomorphic involution. The three cases above correspond to

θ(g) = (gT )−1, θ(g) = (−JgTJ)−1 with n is even and J =

(
0 1n/2
−1n/2 0

)
, and θ(g) =

(
1p 0

0 −1q

)
g

(
1p 0

0 −1q

)
respectively. Here denote 1n to be the n-by-n identity matrix.

Study of (closure of) K-orbits is related to representation of real forms of G, Schubert calculus and equivariant
cohomologies of the flag variety.

Affine analogs: orbits in the affine flag variety

Let K be a quadratically closed field, i.e. a field of char. not equal to 2 in which every element has a square root.

Let K((t)) be the field of formal Laurent series in t consisting of all the formal sums
∞∑
i≥N

ait
i, in which N ∈ Z and

ai ∈ K for i ≥ N .

Let K[[t]] be the ring of formal power series consisting of all the formal sums
∞∑
i≥0

ait
i, in which ai ∈ K.

Redefine G = GL(n,K((t))) to be the group of invertible n-by-n matrices over K((t)).
Redefine B to be the subgroup consisting of all upper triangular modulo t matrices in GL(n,K[[t]]), that is, invertible
matrices with entries in K[[t]] that become upper triangular if we set t = 0 for these matrices.
The G above is the (algebraic) loop group of GL(n,K) and B is an Iwahori subgroup.
The affine Bruhat decomposition is written as

G =
⊔
w∈W̃

BwB,

where W̃ is the affine Weyl group of G, which is isomorphic to a semidirect product of the symmetric group Sn of
permutations of n elements and Zn of n-tuples of integers.
The set of cosets G/B is often called the affine flag variety.
In this work, we investigate the K-orbits in G/B, where K = O(n,K((t))), Sp(n,K((t))) or
GL(p,K((t)))× GL(q,K((t))). We also consider the SO(n,K((t)))-orbits in the affine flag variety of SL(n,K((t))).

Orthogonal orbits

Suppose K = O(n,C((t))) = {g ∈ G : gTg = 1n}.
Define an affine permutation matrix to be an n-by-n monomial matrix with integral powers of t as non-zero entries.

Define SymAPMn to be the set of all symmetric n-by-n affine permutation matrices. Define eSymAPMn to be the set
of elements in SymAPMn for which the sum of the powers of t is even.

Theorem

In the case where K = O(n,K((t))) and G = GL(n,K((t))), for each double coset O ∈ K\G/B, there exists a unique
w ∈ eSymAPMn such that gTg = w for some g ∈ O. Moreover, for each w ∈ eSymAPMn, the set of matrices g
satisfying gTg = w is non-empty and its elements lie in the same double coset.

For each w ∈ eSymAPMn, there is an explicit formula for a matrix gw ∈ G such that gTwgw = w.

Corollary

The map w 7→ KgwB is a bijection between eSymAPMn and K\G/B.

Define ∗ to be the automorphism on affine permutation matrices by substituting t−1 in the places with t. Then every
w ∈ SymAPMn satisfies w∗ = w−1. We call these matrices as extended affine twisted involutions.

Similarly, the set eSymAPMn consists of all matrices in SymAPMn for which the sum of the powers of t is an even
integer. Therefore we call these matrices as even extended affine twisted involutions.

Example: Suppose n = 3. Then matrices in eSymAPM3 are in one of the following forms:

w1 =

ta 0 0

0 tb 0

0 0 tc

 , w2 =

 0 ta 0

ta 0 0

0 0 tb

 ,

tb 0 0

0 0 ta

0 ta 0

 ,

 0 0 ta

0 tb 0

ta 0 0

 .

In all of the above forms, the exponents a, b, c are integers. The sum a + b + c is even for the first form and the
integer b is even in the remaining forms. For example if a, b are odd and c is even in w1, then

gw1
=

 t
a−1
2 −(t− 1)

1
2t

b−1
2 0

t
a−1
2 (t− 1)

1
2 t

b−1
2 0

0 0 t
c
2

 and gw2
=

i −ita/2 0

1 ta/2 0

0 0 t
b
2

 .

Complications in special orthogonal orbits

Let G = SL(n,K((t))) and K = SO(n,K((t))) = {g ∈ SL(n,K((t))) : gTg = 1n}.
There is a definition of iSymAPMn ⊂ G to be a subset of symmetric monomial matrices with entries ta or ±ita.
For each w ∈ iSymAPMn, we define explicitly gw ∈ SL(n,K((t))) satisfying gTwgw = w. Similar correspondence as
above holds:

Corollary

The map w 7→ KgwB is a bijection between iSymAPMn and K\G/B.

The matrices in iSymAPMn can be indexed by affine twisted involutions, which are symmetric affine permutation
matrices with sum of powers of t equal to 0.

Example: Suppose n = 4. Then matrices in iSymAPM4 are in one of the following forms:

w1 =


ta 0 0 0

0 tb 0 0

0 0 tc 0

0 0 0 td

 , w2 =


0 ita 0 0

ita 0 0 0

0 0 0 itb

0 0 itb 0

 , w3 =


0 9ita 0 0

9ita 0 0 0

0 0 0 itb

0 0 itb 0

 ,


0 0 ±ita 0

0 0 0 itb

±ita 0 0 0

0 itb 0 0

 ,


0 0 0 ±ita
0 0 itb 0

0 itb 0 0

±ita 0 0 0

 ,


0 ita 0 0

ita 0 0 0

0 0 tb 0

0 0 0 tc

 ,


0 0 ita 0

0 tb 0 0

ita 0 0 0

0 0 0 tc

 ,


0 0 0 ita

0 tb 0 0

0 0 tc 0

ita 0 0 0

 ,


tb 0 0 0

0 0 ita 0

0 ita 0 0

0 0 0 tc

 ,


tb 0 0 0

0 0 0 ita

0 0 tc 0

0 ita 0 0

 ,


tb 0 0 0

0 tc 0 0

0 0 0 ita

0 0 ita 0

 .

In all of the above forms, the exponents in t’s are integers and add up to zero. Suppose a, b are odd, and c, d are even in
w1. Then

gw1
=


t
a−1
2 −(t− 1)

1
2t

b−1
2 0 0

t
a−1
2 (t− 1)

1
2 t

b−1
2 0 0

0 0 t
c
2 0

0 0 0 t
d
2

 and

gw2
=


ta/2 i 0 0

ita/2 1 0 0

0 0 tb/2 i

0 0 itb/2 1

 and gw3
=


i −ta/2 0 0

1 −ita/2 0 0

0 0 tb/2 i

0 0 itb/2 1

 .

Symplectic orbits

Let G = GL(2n,K((t))), and K = Sp(2n,K((t))) = {g ∈ GL(2n,K((t))) : gTJg = J}.
The set SkewAPM2n consists of all skew-symmetric 2n-by-2n monomial matrices whose non-zero entries above the
diagonal are integral powers of t.

Theorem

In the case where K = Sp(2n,K((t))) and G = GL(2n,K((t))), for each double coset O ∈ K\G/B, there exists a
unique w ∈ SkewAPM2n such that gTJg = w for some g ∈ O. Moreover, for each w ∈ SkewAPM2n, the set of matrices
g satisfying gTJg = w is non-empty and its elements lie in the double coset.

For each w ∈ SkewAPM2n, there is an explicit formula for a matrix gw ∈ GL(2n,K((t))) such that gTwJgw = w.

Corollary

The map w 7→ KgwB is a bijection between SkewAPM2n and K\G/B.

The matrices in SkewAPM2n can be indexed by the set of fixed-point-free extended affine twisted involutions,
consisting of symmetric affine permutation matrices with no non-zero diagonal entries.
Example: Suppose n = 2. Then matrices in SkewAPM4 are in one of the following forms:

w1 =


0 ta 0 0

−ta 0 0 0

0 0 0 tb

0 0 −tb 0

 ,


0 0 ta 0

0 0 0 tb

−ta 0 0 0

0 −tb 0 0

 ,


0 0 0 ta

0 0 tb 0

0 −tb 0 0

−ta 0 0 0

 .

Here a and b are integers. It holds that

gw1
=


ta 0 0 0

0 1 0 0

0 0 tb 0

0 0 0 1

 .

Product group orbits

Suppose K = GL(p,K((t)))× GL(q,K((t))) =
{(

k1 0
0 k2

)
: k1 ∈ GL(p,K((t))), k2 ∈ GL(q,K((t)))

}
with p + q = n.

An affine (p, q)-clan is a Z-indexed sequence c = (. . . , c1, c2, c3, . . . ) with n = p + q encoding an affine involution
with + or − signs assigned to the fixed points, s.t. #{i ∈ [n] : ci = +} −#{i ∈ [n] : ci = −} = p− q.
For example, the affine (1, 1)-clans are (+,−), (−,+) and (1, 1 + 2k) for k ∈ Z. The affine (2, 1)-clans are (+,+,−),
(+,−,+), (−,+,+), (1, 1 + 3k,+), (+, 1, 1 + 3k) and (1,+, 1 + 3k) for k ∈ Z.
Below are winding diagrams for affine (4, 4)-clans with (c1, c2, c3, c4, c5, c6, c7, c8) = (1, 2,+, 3,−, 2, 2− 8, 1 + 8) and
(1, 2,−, 3,+, 2, 2 + 8, 1− 8) respectively.

1 2
3

456
7
8

+

−

1 2
3

456
7
8

−

+

For every affine (p, q)-clan c = (. . . , c1, c2, . . . , cn, . . . ), there is an inductive procedure defining an affine (p, q)-clan
matrix in GL(n,K((t))).

Theorem

Suppose G = GL(n,K((t))), B the Iwahori subgroup of G, and K = GL(p,K((t)))×GL(q,K((t))). The affine (p, q)-clan
matrices are distinct double coset representatives of the double cosets in K\G/B.

Example: Suppose n = 3, p = 2 and q = 1, and a ∈ Z≤0, b ∈ Z<0. Then the following affine (2, 1)-clan matrices are
distinct double coset representatives in K\G/B:1 0 0

0 1 0

0 0 1

 ,

1 0 0

0 0 1

0 1 0

 ,

0 1 0

0 0 1

1 0 0

 ,

1 0 0

0 1 0

0 ta 1

 ,

1 0 0

0 0 1

0 1 tb

 ,

 1 0 0

0 0 1

ta 1 0

 ,

0 1 0

0 0 1

1 tb 0

 ,

 1 0 0

0 1 0

ta 0 1

 ,

0 1 0

0 0 1

1 0 tb

 .

The affine (2, 1)-clan matrices above correspond to the affine (2, 1)-clans (−,+,+), (+,−,+) and (+,+,−),
(1, 1 + 3a,+), (1, 1− 3b,+), (+, 1, 1 + 3a), (+, 1, 1− 3b), (1,+, 1 + 3a) and (1,+, 1− 3b) respectively.
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