Orbits in the affine flag variety of type ${\cal A}$

Kam Hung TONG*

The Hong Kong University of Science and Technology

Classical background: orbits in the flag variety

- Let G be a connected reductive algebraic group over $\mathbb C$. Let $B\subset G$ be a Borel subgroup of G.
- The well known Bruhat decomposition is $G = \coprod_{GW} BwB$, where W is the Weyl group of G.
- The coset space G/B is also called the flag variety. So Bruhat decomposition is also about B-orbits in the flag variety.
- Now let $G = GL(n, \mathbb{C})$, and B be the Borel subgroup consists of upper triangular matrices in G. In this case $W \simeq S_n$, the group of permutation of n elements.
- Let $K = O(n, \mathbb{C})$. Then $G = \coprod_{w \in I} KwB$, where I consists of involutions in S_n .
- Let $K = \operatorname{Sp}(n,\mathbb{C})$ (n even). Then $G = \coprod_{w \in I^{\operatorname{fpf}}} KwB$, where I^{fpf} consists of fixed-point-free involutions in S_n .
- $\text{Let } K = \operatorname{GL}(p,\mathbb{C}) \times \operatorname{GL}(q,\mathbb{C}) \text{ with } p+q=n. \text{ Then } G = \bigsqcup_{w \in \mathcal{C}(U(p,q))} KwB \text{, where } \mathcal{C}(U(p,q)) \text{ is the set of } (p,q)\text{-}\mathit{clans}.$
- The above K's satisfy $K=G^{\theta}$, where θ is a holomorphic involution. The three cases above correspond to $\theta(g)=(g^T)^{-1}$, $\theta(g)=(-Jg^TJ)^{-1}$ with n is even and $J=\begin{pmatrix} 0 & 1_{n/2} \\ -1_{n/2} & 0 \end{pmatrix}$, and $\theta(g)=\begin{pmatrix} 1_p & 0 \\ 0 & -1_q \end{pmatrix}g\begin{pmatrix} 1_p & 0 \\ 0 & -1_q \end{pmatrix}$ respectively. Here denote 1_n to be the n-by-n identity matrix.
- Study of (closure of) K-orbits is related to representation of real forms of G, Schubert calculus and equivariant cohomologies of the flag variety.

Orthogonal orbits

- Suppose $K = \mathbf{O}(n, \mathbb{C}((t))) = \{g \in G : g^Tg = 1_n\}.$
- lacktriangle Define an affine permutation matrix to be an n-by-n monomial matrix with integral powers of t as non-zero entries.
- Define $SymAPM_n$ to be the set of all symmetric n-by-n affine permutation matrices. Define $eSymAPM_n$ to be the set of elements in $SymAPM_n$ for which the sum of the powers of t is even.

Theorem

In the case where $K = \mathsf{O}(n,\mathbb{K}((t)))$ and $G = \mathsf{GL}(n,\mathbb{K}((t)))$, for each double coset $\mathcal{O} \in K \backslash G/B$, there exists a unique $w \in \mathsf{eSymAPM}_n$ such that $g^Tg = w$ for some $g \in \mathcal{O}$. Moreover, for each $w \in \mathsf{eSymAPM}_n$, the set of matrices g satisfying $g^Tg = w$ is non-empty and its elements lie in the same double coset.

• For each $w \in \operatorname{eSymAPM}_n$, there is an explicit formula for a matrix $g_w \in G$ such that $g_w^T g_w = w$.

Corollary

The map $w \mapsto Kg_wB$ is a bijection between $\operatorname{eSym}\mathsf{APM}_n$ and $K\backslash G/B$.

- Define * to be the automorphism on affine permutation matrices by substituting t^{-1} in the places with t. Then every $w \in \text{SymAPM}_n$ satisfies $w^* = w^{-1}$. We call these matrices as extended affine twisted involutions.
- Similarly, the set $eSymAPM_n$ consists of all matrices in $SymAPM_n$ for which the sum of the powers of t is an even integer. Therefore we call these matrices as even extended affine twisted involutions.
- Example: Suppose n=3. Then matrices in eSymAPM $_3$ are in one of the following forms:

$$w_1 = \begin{pmatrix} t^a & 0 & 0 \\ 0 & t^b & 0 \\ 0 & 0 & t^c \end{pmatrix}, w_2 = \begin{pmatrix} 0 & t^a & 0 \\ t^a & 0 & 0 \\ 0 & 0 & t^b \end{pmatrix}, \begin{pmatrix} t^b & 0 & 0 \\ 0 & 0 & t^a \\ 0 & t^a & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & t^a \\ 0 & t^b & 0 \\ t^a & 0 & 0 \end{pmatrix}.$$

In all of the above forms, the exponents a, b, c are integers. The sum a + b + c is even for the first form and the integer b is even in the remaining forms. For example if a, b are odd and c is even in w_1 , then

$$g_{w_1} = egin{pmatrix} t^{rac{a-1}{2}} & -(t-1)^{rac{1}{2}}t^{rac{b-1}{2}} & 0 \ t^{rac{a-1}{2}}(t-1)^{rac{1}{2}} & t^{rac{b-1}{2}} & 0 \ 0 & 0 & t^{rac{c}{2}} \end{pmatrix} \quad ext{and} \quad g_{w_2} = egin{pmatrix} i & -it^a/2 & 0 \ 1 & t^a/2 & 0 \ 0 & 0 & t^{rac{b}{2}} \end{pmatrix}.$$

Complications in special orthogonal orbits

- Let $G=\operatorname{SL}(n,\mathbb{K}((t)))$ and $K=\operatorname{SO}(n,\mathbb{K}((t)))=\{g\in\operatorname{SL}(n,\mathbb{K}((t))):g^Tg=1_n\}$.
- There is a definition of $iSymAPM_n \subset G$ to be a subset of symmetric monomial matrices with entries t^a or $\pm it^a$.
- For each $w \in i$ SymAPM $_n$, we define explicitly $g_w \in SL(n, \mathbb{K}((t)))$ satisfying $g_w^T g_w = w$. Similar correspondence as above holds:

Corollary

The map $w\mapsto Kg_wB$ is a bijection between $i\mathrm{SymAPM}_n$ and $K\backslash G/B$.

- The matrices in iSymAPM $_n$ can be indexed by *affine twisted involutions*, which are symmetric affine permutation matrices with sum of powers of t equal to 0.
- Example: Suppose n=4. Then matrices in $i \text{SymAPM}_4$ are in one of the following forms:

$$w_{1} = \begin{pmatrix} t^{a} & 0 & 0 & 0 \\ 0 & t^{b} & 0 & 0 \\ 0 & 0 & t^{c} & 0 \\ 0 & 0 & 0 & t^{d} \end{pmatrix}, w_{2} = \begin{pmatrix} 0 & it^{a} & 0 & 0 \\ it^{a} & 0 & 0 & 0 \\ 0 & 0 & 0 & it^{b} \\ 0 & 0 & it^{b} & 0 \end{pmatrix}, w_{3} = \begin{pmatrix} 0 & -it^{a} & 0 & 0 \\ -it^{a} & 0 & 0 & 0 \\ 0 & 0 & 0 & it^{b} \\ 0 & 0 & it^{b} & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & \pm it^{a} & 0 \\ 0 & 0 & 0 & it^{b} \\ \pm it^{a} & 0 & 0 & 0 \\ 0 & it^{b} & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & it^{a} & 0 \\ 0 & it^{b} & 0 & 0 \\ \pm it^{a} & 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & it^{a} & 0 \\ 0 & t^{b} & 0 & 0 \\ 0 & 0 & t^{c} & 0 \\ 0 & 0 & 0 & t^{c} \end{pmatrix}, \begin{pmatrix} t^{b} & 0 & 0 & 0 \\ 0 & 0 & it^{a} & 0 & 0 \\ 0 & 0 & it^{a} & 0 & 0 \\ 0 & 0 & 0 & t^{c} & 0 \end{pmatrix}, \begin{pmatrix} t^{b} & 0 & 0 & 0 \\ 0 & 0 & it^{a} & 0 & 0 \\ 0 & 0 & it^{a} & 0 & 0 \\ 0 & it^{a} & 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} t^{b} & 0 & 0 & 0 \\ 0 & 0 & it^{a} & 0 & 0 \\ 0 & 0 & it^{a} & 0 & 0 \\ 0 & 0 & it^{a} & 0 & 0 \end{pmatrix}, \begin{pmatrix} t^{b} & 0 & 0 & 0 \\ 0 & 0 & it^{a} & 0 & 0 \\ 0 & 0 & it^{a} & 0 & 0 \end{pmatrix}.$$

In all of the above forms, the exponents in t's are integers and add up to zero. Suppose a, b are odd, and c, d are even in w_1 . Then

$$g_{w_1} = egin{pmatrix} t^{rac{a-1}{2}} & -(t-1)^{rac{1}{2}}t^{rac{b-1}{2}} & 0 & 0 \ t^{rac{a-1}{2}}(t-1)^{rac{1}{2}} & t^{rac{b-1}{2}} & 0 & 0 \ 0 & 0 & t^{rac{c}{2}} & 0 \ 0 & 0 & 0 & t^{rac{d}{2}} \end{pmatrix} \quad ext{and} \quad egin{pmatrix} t^a / 2 & i & 0 & 0 \ 0 & 0 & 0 & t^{rac{d}{2}} \end{pmatrix}$$

$$g_{w_2} = \begin{pmatrix} t^a/2 & i & 0 & 0 \\ it^a/2 & 1 & 0 & 0 \\ 0 & 0 & t^b/2 & i \\ 0 & 0 & it^b/2 & 1 \end{pmatrix} \quad \text{and} \quad g_{w_3} = \begin{pmatrix} i & -t^a/2 & 0 & 0 \\ 1 & -it^a/2 & 0 & 0 \\ 0 & 0 & t^b/2 & i \\ 0 & 0 & it^b/2 & 1 \end{pmatrix}.$$

Affine analogs: orbits in the affine flag variety

- Let K be a quadratically closed field, i.e. a field of char. not equal to 2 in which every element has a square root.
- Let $\mathbb{K}((t))$ be the field of formal Laurent series in t consisting of all the formal sums $\sum_{i\geq N}a_it^i$, in which $N\in\mathbb{Z}$ and $a_i\in\mathbb{K}$ for $i\geq N$.
- Let $\mathbb{K}[[t]]$ be the ring of formal power series consisting of all the formal sums $\sum_{i>0}^{\infty} a_i t^i$, in which $a_i \in \mathbb{K}$.
- Redefine $G = GL(n, \mathbb{K}((t)))$ to be the group of invertible n-by-n matrices over $\mathbb{K}((t))$.
- Redefine B to be the subgroup consisting of all upper triangular modulo t matrices in $GL(n, \mathbb{K}[[t]])$, that is, invertible matrices with entries in $\mathbb{K}[[t]]$ that become upper triangular if we set t=0 for these matrices.
- The G above is the *(algebraic) loop group* of $GL(n, \mathbb{K})$ and B is an *Iwahori subgroup*.
- The affine Bruhat decomposition is written as

$$G = \bigsqcup_{w \in \widetilde{W}} BwB,$$

where \widetilde{W} is the affine Weyl group of G, which is isomorphic to a semidirect product of the symmetric group S_n of permutations of n elements and \mathbb{Z}^n of n-tuples of integers.

- The set of cosets G/B is often called the *affine flag variety*.
- In this work, we investigate the K-orbits in G/B, where $K = \mathrm{O}(n,\mathbb{K}((t)))$, $\mathrm{Sp}(n,\mathbb{K}((t)))$ or $\mathrm{GL}(p,\mathbb{K}((t))) \times \mathrm{GL}(q,\mathbb{K}((t)))$. We also consider the $\mathrm{SO}(n,\mathbb{K}((t)))$ -orbits in the affine flag variety of $\mathrm{SL}(n,\mathbb{K}((t)))$.

Symplectic orbits

- $\bullet \quad \text{Let } G = \operatorname{GL}(2n,\mathbb{K}((t))), \text{ and } K = \operatorname{Sp}(2n,\mathbb{K}((t))) = \{g \in \operatorname{GL}(2n,\mathbb{K}((t))) : g^TJg = J\}.$
- The set $SkewAPM_{2n}$ consists of all skew-symmetric 2n-by-2n monomial matrices whose non-zero entries above the diagonal are integral powers of t.

Theorem

In the case where $K = \operatorname{Sp}(2n, \mathbb{K}((t)))$ and $G = \operatorname{GL}(2n, \mathbb{K}((t)))$, for each double coset $\mathcal{O} \in K \backslash G/B$, there exists a unique $w \in \operatorname{SkewAPM}_{2n}$ such that $g^T J g = w$ for some $g \in \mathcal{O}$. Moreover, for each $w \in \operatorname{SkewAPM}_{2n}$, the set of matrices g satisfying $g^T J g = w$ is non-empty and its elements lie in the double coset.

• For each $w \in \text{SkewAPM}_{2n}$, there is an explicit formula for a matrix $g_w \in \text{GL}(2n, \mathbb{K}((t)))$ such that $g_w^T J g_w = w$.

Corollary

The map $w \mapsto Kg_wB$ is a bijection between SkewAPM_{2n} and $K\backslash G/B$.

- The matrices in SkewAPM $_{2n}$ can be indexed by the set of fixed-point-free extended affine twisted involutions, consisting of symmetric affine permutation matrices with no non-zero diagonal entries.
- Example: Suppose n=2. Then matrices in SkewAPM₄ are in one of the following forms:

$$w_{1} = \begin{pmatrix} 0 & t^{a} & 0 & 0 \\ -t^{a} & 0 & 0 & 0 \\ 0 & 0 & 0 & t^{b} \\ 0 & 0 & -t^{b} & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & t^{a} & 0 \\ 0 & 0 & 0 & t^{b} \\ -t^{a} & 0 & 0 & 0 \\ 0 & -t^{b} & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 & t^{a} \\ 0 & 0 & t^{b} & 0 \\ 0 & -t^{b} & 0 & 0 \\ -t^{a} & 0 & 0 & 0 \end{pmatrix}.$$

Here a and b are integers. It holds that

$$g_{w_1} = egin{pmatrix} t^a & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & t^b & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Product group orbits

- Suppose $K = \mathrm{GL}(p,\mathbb{K}((t))) \times \mathrm{GL}(q,\mathbb{K}((t))) = \left\{ \left(\begin{smallmatrix} k_1 & 0 \\ 0 & k_2 \end{smallmatrix} \right) : k_1 \in \mathrm{GL}(p,\mathbb{K}((t))), k_2 \in \mathrm{GL}(q,\mathbb{K}((t))) \right\}$ with p+q=n.
- An affine (p,q)-clan is a \mathbb{Z} -indexed sequence $c=(\ldots,c_1,c_2,c_3,\ldots)$ with n=p+q encoding an affine involution with + or signs assigned to the fixed points, s.t. $\#\{i\in[n]:c_i=+\}-\#\{i\in[n]:c_i=-\}=p-q$.
- For example, the affine (1,1)-clans are (+,-), (-,+) and (1,1+2k) for $k \in \mathbb{Z}$. The affine (2,1)-clans are (+,+,-), (+,-,+), (-,+,+), (1,1+3k,+), (+,1,1+3k) and (1,+,1+3k) for $k \in \mathbb{Z}$.
- Below are *winding diagrams* for affine (4,4)-clans with $(c_1,c_2,c_3,c_4,c_5,c_6,c_7,c_8)=(1,2,+,3,-,2,2-8,1+8)$ and (1,2,-,3,+,2,2+8,1-8) respectively.

• For every affine (p,q)-clan $c=(\ldots,c_1,c_2,\ldots,c_n,\ldots)$, there is an inductive procedure defining an affine (p,q)-clan matrix in $\mathsf{GL}(n,\mathbb{K}(t))$.

Theorem

Suppose $G = GL(n, \mathbb{K}((t)))$, B the Iwahori subgroup of G, and $K = GL(p, \mathbb{K}((t))) \times GL(q, \mathbb{K}((t)))$. The affine (p, q)-clan matrices are distinct double coset representatives of the double cosets in $K \setminus G/B$.

Example: Suppose n=3, p=2 and q=1, and $a\in\mathbb{Z}_{\leq 0}$, $b\in\mathbb{Z}_{<0}$. Then the following affine (2,1)-clan matrices are distinct double coset representatives in $K\backslash G/B$:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & t^a & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & t^b \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ t^a & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & t^b & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ t^a & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & t^b \end{pmatrix}$$

The affine (2,1)-clan matrices above correspond to the affine (2,1)-clans (-,+,+), (+,-,+) and (+,+,-), (1,1+3a,+), (1,1-3b,+), (+,1,1+3a), (+,1,1-3b), (1,+,1+3a) and (1,+,1-3b) respectively.