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Classical background: orbits in the flag variety

Affine analogs: orbits in the atfine flag variety

= Let GG be a connected reductive algebraic group over C. Let B C G be a Borel subgroup of GG.

= The well known Bruhat decomposition is G = Ll BwB, where W is the Weyl group of G.
weW
= The coset space G/ B is also called the flag variety. So Bruhat decomposition is also about B-orbits in the flag variety.

= Now let G = GL(n,C), and B be the Borel subgroup consists of upper triangular matrices in G. In this case
W ~ S, the group of permutation of n elements.

* Let K =0(n,C). Then G = u KwB, where I consists of involutions in .S,,.

wel
» Let K =Sp(n,C) (n even). Then G = u KwB, where I'™ consists of fixed-point-free involutions in S,
we IPf
* Let K =GL(p,C) x GL(q,C) with p+q=mn. Then G = LI KwB, where C(U(p, q)) is the set of (p, q)-clans.

weC(U(p.q))
» The above K's satisfy K = GY, where 6 is a holomorphic involution. The three cases above correspond to

0(g) = (g")71, 0(g) = (—Jg' J)~ with n is even and J = ( 0 1”/2) and 0(g) = <1p 0 ) g (1p 0 )
L 0 0 -1,)9\0 -1,

respectively. Here denote 1,, to be the n-by-n identity matrix.

= Study of (closure of) K-orbits is related to representation of real forms of GG, Schubert calculus and equivariant
cohomologies of the tlag variety.

Orthogonal orbits

= Let K be a quadratically closed field, i.e. a field of char. not equal to 2 in which every element has a square root.
oo

= Let K((¢)) be the field of formal Laurent series in ¢ consisting of all the formal sums Zaiti, in which N € Z and
i>N
a;, € K fori > N.

o
= Let K[[t]] be the ring of formal power series consisting of all the formal sums Zaiti, in which a; € K.
i>0

= Redefine G = GL(n,K((t))) to be the group of invertible n-by-n matrices over K((t)).

= Redefine B to be the subgroup consisting of all upper triangular modulo ¢ matrices in GL(n, K||¢]]), that is, invertible
matrices with entries in K|[¢]] that become upper triangular if we set ¢ = 0 for these matrices.

= The G above is the (algebraic) loop group of GL(n,K) and B is an Iwahori subgroup.

= The affine Bruhat decomposition is written as
G = u BwB,
weW
where W is the affine Weyl group ot GG, which is isomorphic to a semidirect product of the symmetric group S,, of

permutations of n elements and Z" of n-tuples of integers.

= The set of cosets G/ B is often called the affine flag variety.

= In this work, we investigate the K-orbits in G/B, where K = O(n,K((t))), Sp(n, K((t))) or
GL(p, K((t))) x GL(¢q,K((t))). We also consider the SO(n, K((t)))-orbits in the affine flag variety of SL(n, K((%))).

Symplectic orbits

= Suppose K =0(n,C((t))) ={9g€G:g9lg=1,}
= Define an affine permutation matrix to be an n-by-n monomial matrix with integral powers of ¢ as non-zero entries.

= Define SymAPM, to be the set of all symmetric n-by-n affine permutation matrices. Define eSymAPM, to be the set
of elements in SymAPM, for which the sum of the powers of ¢ is even.

T heorem

= Let G = GL(2n,K((¢))), and K = Sp(2n,K((t))) = {g € GL(2n, K((t))) : g' Jg = J}.
= The set SkewAPMs,, consists of all skew-symmetric 2n-by-2n monomial matrices whose non-zero entries above the
diagonal are integral powers of t.

T heorem

In the case where K = O(n,K((t))) and G = GL(n,K((t))), for each double coset O € K\G/B, there exists a unique
w € eSymAPM,  such that g’ g = w for some g € O. Moreover, for each w € eSymAPM_  the set of matrices g
satisfying g’ ¢ = w is non-empty and its elements lie in the same double coset.

= For each w € eSymAPM, , there is an explicit formula for a matrix g, € G such that ¢! g, = w.

Corollary

In the case where K = Sp(2n,K((t))) and G = GL(2n,K((t))), for each double coset O € K\G/B, there exists a
unique w € SkewAPMs,,, such that g’ Jg = w for some g € O. Moreover, for each w € SkewAPMs,,, the set of matrices
g satisfying g’ Jg = w is non-empty and its elements lie in the double coset.

= For each w € SkewAPMs,,, there is an explicit formula for a matrix g,, € GL(2n, K((t))) such that g. Jg, = w.

Corollary

The map w +— Kg,B is a bijection between eSymAPM_ and K\G/B.

= Define * to be the automorphism on affine permutation matrices by substituting ! in the places with . Then every
w € SymAPM_ satisfies w* = w™!. We call these matrices as extended affine twisted involutions.

= Similarly, the set eSymAPM, consists of all matrices in SymAPM, for which the sum of the powers of ¢ is an even
integer. Therefore we call these matrices as even extended affine twisted involutions.

= Example: Suppose n = 3. Then matrices in eSymAPMj; are in one of the following forms:

0 0 0 t* 0 0 0 0 0 t°
w=10t 0], we=1t00], 00 t*]|, 0t 0
0 0 t° 0 0 ¢ 0 t* 0 e 0 0

In all of the above forms, the exponents a, b, ¢ are integers. The sum a + b+ ¢ is even for the first form and the
integer b is even in the remaining forms. For example it a, b are odd and ¢ is even in wy, then

t'T —(t—1)z 0 i —it")2 0
Gy = | tT(t—1)2  tT o| and gu, =11 t7/2 0
0 0 t2 0 0

Complications in special orthogonal orbits

The map w +— Kg,B is a bijection between SkewAPM,,, and K\G/B.

= The matrices in SkewAPM,,, can be indexed by the set of fixed-point-free extended affine twisted involutions,
consisting of symmetric affine permutation matrices with no non-zero diagonal entries.

= Example: Suppose n = 2. Then matrices in SkewAPMy are in one of the following forms:
(ot 00\ [0 0to0\ [0 0 0t
—t*0 0 0 0 0 0¢ 0 0 to0
000 0 "=t 0 00" 0 =00

\ 0 0 —t"0) \ 0 00 \—t@ 0 oo)

Here a and b are integers. It holds that
(100 0)

o100
Gui =10 00

Product group orbits

* Let G =SL(n,K((%))) and K = SO(n, K((t))) = {g € SL(n, K((¢))) : g" g = 1.}
= There is a definition of :SymAPM_ C G to be a subset of symmetric monomial matrices with entries t* or £it®.

« For each w € iSymAPM, , we define explicitly g, € SL(n,K((t))) satisfying gl g, = w. Similar correspondence as
above holds:

Corollary

The map w — Kg,B is a bijection between i{SymAPM _ and K\G/B.

= The matrices in i<SymAPM  can be indexed by affine twisted involutions, which are symmetric affine permutation
matrices with sum of powers of ¢t equal to 0.

= Example: Suppose n = 4. Then matrices in iSymAPM, are in one of the following forms:

(100 0) (0 it" 0 0 ) (0 <t 0 0\ (0 0 it 0\ (0 0 0 it
0t 00 it 0 0 0 it 0 0 0 0 0 0 qt 0 0 it" 0
Tl oo T o oo 0| T 0 o ||+t 0 o o'l o o o |
\oooﬁ) \o 0@'7560) \0 Oitb()) \oubo o) \iitaOO 0)
(0 00\ (00 0\ (000 (0 00\ (000 (00 0)
it 0 00 0t 0 0 0t 0 0 0 0 it* 0 ooo@'ta 0t 0 0
0 0tto| a0 00|’ lOo ot o0]|’|loa*0 0’0 0 ¢t 100 0 e

\0 0 0¢) \oo0 ot/ \i"00 0 \oo 0 t) \0 it 0 o) \0 0@t 0

In all of the above forms, the exponents in t's are integers and add up to zero. Suppose a, b are odd, and ¢, d are even in
wy. Then

Guw;, = 8 and

(/2 i 0 0) (i —t/2 0 0)
lat21 0 0 1 =itr2 00
Jor =0 0 /2 -

\ 0 0dt"/2 1) \0 0 it"/21)

= Suppose K = GL(p, K((t))) x GL(¢q, K((#))) = { (% n) ki€ GL(p, K((2))), k2 € GL(¢,K((t)))} with p+ ¢ =n.

= An afhine (p, q)-clan is a Z-indexed sequence ¢ = (..., ¢y, ¢, ¢3,...) with n = p + ¢ encoding an affine involution
with 4+ or — signs assigned to the fixed points, st. #{t € [n] :c;=+}—#{1€n]: ca=—-}=p—q

= For example, the affine (1, 1)-clans are (+, —), (—,+) and (1,1+ 2k) for k € Z. The affine (2, 1)-clans are (+,+, —),
(+,—,+), (=, +,4), (1,1 +3k,+), (+,1,1+3k) and (1,+,1+ 3k) for k € Z.

= Below are winding diagrams for affine (4, 4)-clans with (c1, o, ¢3, ¢4, ¢35, cg, C7,c8) = (1,2, 4,3, —,2,2 — 8,14+ 8) and
(1,2, —,3,4+,2,2 + 8,1 — 8) respectively.

= For every affine (p,q)-clanc=1(...,c1,¢o,...,¢p,...), there is an inductive procedure defining an affine (p, q)-clan
matrix in GL(n, K((1))).

T heorem

Suppose G = GL(n,K((t))), B the lwahori subgroup of G, and K = GL(p,K((¢))) x GL(q, K(())). The affine (p, g)-clan

matrices are distinct double coset representatives of the double cosets in K\G/B.

= Example: Suppose n =3, p=2and q=1, and a € Z<y, b € Z—(. Then the following affine (2, 1)-clan matrices are
distinct double coset representatives in K\G/B:

100 100 010 100 100 100 010 100 010
o010l,lo01],lo01|,{o10],]001],]001 001]l,]010],]00°1
00 1 010 100 0t* 1 01 th e 10 1¢0 01 10¢

The affine (2, 1)-clan matrices above correspond to the affine (2,1)-clans (—,+,+), (+, —, +) and (+, +, —),
(1,14 3a,+), (1,1 =3b,+), (+,1,1+3a), (+,1,1—3b), (1, ,1+3a) and (1,+,1 — 3b) respectively.
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