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Introduction of Integer Partitions

m Integer partition: A = (A1, A2, -+ Ag) € N*

Where>\12>\22 ZA[>O

m Young diagram: A left-justified array of boxes where the i-th row has
\; boxes, corresponding to the parts of a partition.

m Hook length: The total number of boxes to the right(arm), below(leg),
and the box itself, based on the box (i, j) € A.

m Frobenius symbol F(A): (a1 +1,...,as+1|b1,...,bs)
where a; and b; are the arm and leg lengths of the box (7,7) € A.

m t-residue diagram: The Young diagram where each box (%, j) is filled with
j —imodt.

m GBG-rank modulo t: w¢(\) = 2G5 ¢I7% where ¢ = ¢ = 27/t

8 ‘ Figure 1. The Young diagram Y, of the partition
5 A= (5,4,3,2).

The numbers on the diagonal show their hook

1 lengths 8, 5, and 1. Yellow and green indicate arm
and leg parts, respectively.

Figure 2. The 3-residue diagram Y, of the partition
A= (5,4,3,2).

Each box is labeled with its residue value mod3.

0 The GBG-rank w3 () is given by the sum
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Theorem: GBG-rank Generating functions

m (Infinite Case) Let ¢ > 2 be a fixed prime, and let ¢ be a primitive ¢-th root
of unity. For w = k¢*, define
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where (a;q), = TTpZ0 (1 — ag®), (a5 9)oo = T1520(1 — ag®).

m (Finite Case) Define
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Sketch of Proof

m The GBG-rank generating function is expressed using Frobenius symbols as

t
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where r; 1= 3970 ¢ ¢ = ¢
m Applying the Jacobi triple product identity to each factor, we obtain a
multiple sum:
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m The exponent of  becomes an integer if and only if ng = --- =nys—1 =0,
and n; = —n1, leading to
k2—(t—1)k
Gi(k,q) = —————.
(gt;59%)%,

m The same method applies to other values of £.

m The finite cases can be obtained using the following finite form of
Jacobi triple product identity: For z # 0 and N, M € NU {0},

= (—2¢;9)N (=1/259) M-
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Theorem: Self-conjugate and Doubled distinct

Let GSCt(w, q), GDD¢(w, q) be the GBG-rank generating functions modulo
t for self-conjugate partitions and doubled distinct partitions respectively.
For an odd prime ¢ and an integer k,

_t. 2t th?—(t—1)k
GSCy (k) = S et o
(9%t ¢%%) o

_2t, 2t th?—(t—2)k
GDDt(k+k<’q):( 4797 )ooq

(¢t q2t)(<)’;*1)/2
2 3 4
'BEEE
<71 1 ¢ Figure 3. The GBG-rank diagram Y of the
self-conjugate partition A = (5, 3,3,3,1).
€_2C_1 1 ¢™ and (™" always come in pairs off the main
diagonal, so the GBG-rank of any self-conjugate
C_S partition is real.
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Figure 4. The GBG-rank diagram Y, of the doubled
é‘_l 1| ¢ gz distinct partition A = (5,4,4,1).
Similarly, ¢™ and ¢~ T! always appear in pairs, so
¢3¢ 1| ¢ the GBG-rank value of doubled distinct partitions is
5 of the form (1 4 ¢) - r for some 7 € R.
-

Future Work

m Investigate GBG-rank generating functions for other restricted partitions.

m Develop formulas for general (nonprime) values of ¢.
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