GBG-rank Generating Functions for Integer Partitions

Hyunsoo Cho ¹ Eunmi Kim ¹ Ho-Hyeong Lee ² Kyeongjun Lee ² Ae Ja Yee ³ Jaeyeong Yoo ⁴

¹Ewha Womans University

²Yonsei University

³The Pennsylvania State University

⁴Kangwon National University

Introduction of Integer Partitions

- Integer partition: $\lambda = (\lambda_1, \lambda_2, \cdots \lambda_\ell) \in \mathbb{N}^\ell$ where $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_\ell > 0$.
- Young diagram: A left-justified array of boxes where the i-th row has λ_i boxes, corresponding to the parts of a partition.
- Hook length: The total number of boxes to the right(arm), below(leg), and the box itself, based on the box $(i,j) \in \lambda$.
- Frobenius symbol $\mathfrak{F}(\lambda)$: $(a_1+1,\ldots,a_s+1\mid b_1,\ldots,b_s)$ where a_i and b_i are the arm and leg lengths of the box $(i,i)\in\lambda$.
- \blacksquare t-residue diagram: The Young diagram where each box (i,j) is filled with $j-i \mod t$.
- GBG-rank modulo t: $\omega_t(\lambda) = \sum_{(i,j) \in \lambda} \zeta^{j-i}$ where $\zeta = \zeta_t = e^{2\pi i/t}$.

Figure 1. The Young diagram Y_{λ} of the partition $\lambda=(5,4,3,2).$ The numbers on the diagonal show their hook lengths 8,5, and 1. Yellow and green indicate arm and leg parts, respectively.

Figure 2. The 3-residue diagram Y_{λ} of the partition $\lambda=(5,4,3,2).$ Each box is labeled with its residue value $\operatorname{mod} 3.$ The GBG-rank $\omega_3(\lambda)$ is given by the sum $\sum_{(i,j)\in\lambda}\zeta_3^{j-i}=1+\zeta_3.$

Theorem: GBG-rank Generating functions

 \blacksquare (Infinite Case) Let $t\geq 2$ be a fixed prime, and let ζ be a primitive t-th root of unity. For $\omega=k\zeta^\ell$, define

$$G_t(\omega, q) := \sum_{\substack{\lambda \in \mathcal{P} \\ \omega_t(\lambda) = \omega}} q^{|\lambda|}.$$

For $k \in \mathbb{Z}$ and $\ell \in \{0, 1, \cdots, t-1\}$

$$G_t(k\zeta^{\ell},q) = \begin{cases} \frac{q^{tk^2 - (t-1)k}}{(q^t;q^t)_{\infty}^t} & \text{if } \ell = 0, \\ \frac{q^{tk^2 + k}}{(q^t;q^t)_{\infty}^t} & \text{if } 1 \leq \ell \leq t - 1, \end{cases}$$

where $(a;q)_n=\prod_{k=0}^{n-1}(1-aq^k)$, $(a;q)_\infty=\prod_{k=0}^\infty(1-aq^k)$.

■ (Finite Case) Define

$$G_{M,N,t}(\omega,q) := \sum_{\substack{\lambda \in \mathcal{P} \\ \lambda_1 \leq N, \ \ell(\lambda) \leq M \\ \omega_\ell(\lambda) = \omega}} q^{|\lambda|}.$$

For $k \in \mathbb{Z}$, $M, N \in \mathbb{N}$ and $\ell \in \{0, \dots, t-1\}$,

$$G_{M,N,t}(k\zeta^{\ell},q) =$$

$$\begin{cases} q^{tk^2 - (t-1)k} {N_{t,1} + M_{t,1} \brack N_{t,1} + M_{t,1}}_{q^t} {N_{t,t} + M_{t,t} \brack N_{t,t} + k}_{q^t} \prod_{j=2}^{t-1} {N_{t,j} + M_{t,j} \brack N_{t,j}}_{q^t} & \ell = 0, \\ q^{tk^2 + k} {N_{t,\ell+1} + M_{t,\ell+1} \brack N_{t,\ell+1} + M_{t,\ell+1}}_{q^t} \prod_{\substack{1 \le j \le t \\ i \ne j}} {N_{t,j} + M_{t,j} \brack N_{t,j}}_{q^t} & 1 \le \ell \le t-1, \end{cases}$$

where $M_{t,j}:=\left\lfloor \frac{M+j-1}{t}
ight
floor, \, N_{t,j}:=\left\lfloor \frac{N-j}{t}
ight
floor+1, \, \left[n top k
ight]_q:=rac{(q;q)_n}{(q;q)_k(q;q)_{n-k}}.$

References

[1] A. Berkovich and F. G. Garvan, The BG-rank of a Partition and Its Applications, *Advances in Applied Mathematics*, **40** (2008), no. 3, pp. 377–400.

[2] A. Berkovich and A. Dhar, On Partitions with Bounded Largest Part and Fixed Integral GBG-rank Modulo Primes, *Annals of Combinatorics*, to appear (2024), pp.

Sketch of Proof

 \blacksquare The GBG-rank generating function is expressed using Frobenius symbols as

$$\sum_{\lambda\in\mathcal{P}}x^{\omega_t(\lambda)}q^{|\lambda|}=[z^0]\prod_{j=1}^t(-x^{r_j}zq;q)_{\infty}\,(-x^{-r_j}z^{-1}q^{t-j};q)_{\infty},$$

where $r_j := \sum_{i=0}^{j-1} \zeta^i$, $\zeta = \zeta_t$.

Applying the Jacobi triple product identity to each factor, we obtain a multiple sum:

$$\sum_{\lambda \in \mathcal{P}} x^{\omega_t(\lambda)} q^{|\lambda|} = \frac{1}{(q^t; q^t)_\infty^t} \sum_{\substack{n_1 + \dots + n_t = 0 \\ n_1 \dots n_t \equiv -\infty}}^\infty x^{\sum_{j=1}^t n_j r_j} q^{\sum_{j=1}^t \left(\frac{tn_j(n_j - 1)}{2} + jn_j\right)}.$$

■ The exponent of x becomes an integer if and only if $n_2=\cdots=n_{t-1}=0$, and $n_t=-n_1$, leading to

$$G_t(k,q) = \frac{q^{tk^2 - (t-1)k}}{(q^t; q^t)_{\infty}^t}.$$

- lacktriangle The same method applies to other values of ℓ .
- The finite cases can be obtained using the following finite form of Jacobi triple product identity: For $z \neq 0$ and $N, M \in \mathbb{N} \cup \{0\}$,

$$\sum_{n=-M}^{N} \begin{bmatrix} N+M \\ N-n \end{bmatrix}_{q^t} z^n \ q^{n(n+1)/2} = (-zq;q)_N \ (-1/z;q)_M.$$

Theorem: Self-conjugate and Doubled distinct

Let $GSC_t(\omega,q), GDD_t(\omega,q)$ be the GBG-rank generating functions modulo t for self-conjugate partitions and doubled distinct partitions respectively. For an odd prime t and an integer k,

$$GSC_t(k,q) = \frac{(-q^t; q^{2t})_{\infty} q^{tk^2 - (t-1)k}}{(q^{2t}; q^{2t})_{\infty}^{(t-1)/2}},$$

$$GDD_t(k+k\zeta,q) = \frac{(-q^{2t};q^{2t})_{\infty}q^{tk^2-(t-2)k}}{(q^{2t};q^{2t})_{\infty}^{(t-1)/2}}.$$

Figure 3. The GBG-rank diagram Y_{λ} of the self-conjugate partition $\lambda=(5,3,3,3,1)$. ζ^n and ζ^{-n} always come in pairs off the main diagonal, so the GBG-rank of any self-conjugate partition is real.

Figure 4. The GBG-rank diagram Y_λ of the doubled distinct partition $\lambda=(5,4,4,1)$. Similarly, ζ^n and ζ^{-n+1} always appear in pairs, so the GBG-rank value of doubled distinct partitions is of the form $(1+\zeta)\cdot r$ for some $r\in\mathbb{R}$.

Future Work

- Investigate GBG-rank generating functions for other restricted partitions.
- Develop formulas for general (nonprime) values of t.

