Interpreting the chromatic polynomial coefficients via hyperplane arrangements

Neha Goregaokar*

Background

Stanley '73: For a graph G,

 $\chi_G(-1) = \#$ of acyclic orientations of G.

Zaslavsky '74: For a hyperplane arrangement A,

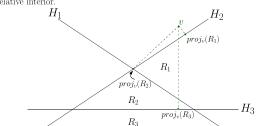
$$(-1)^n \chi_{\mathcal{A}}(-1) = \#$$
 of regions of \mathcal{A} .

Theorem: Let G = ([n], E) be a graph and let A_G be the corresponding graphical arrangement. Then,

$$\chi_G(t) = \chi_{A_G}(t)$$
.

Projection Statistic: $v \in \mathbb{R}^n$, R a region of A,

 $\operatorname{proj}_v(R)=$ the unique point in R having minimum Euclidean distance from v. $\operatorname{pd}_v(R)=$ dimension of the unique face of R that contains $\operatorname{proj}_v(R)$ in its relative interior.



Lofano, Paolini '21, Kabluchko '23:

$$(-1)^{n-k}[t^k]\chi_{\mathcal{A}}(t) = \# \text{ of regions } R \text{ of } \mathcal{A} \text{ with pd}_n(R) = k$$

Greene, Zaslavsky '83:

 $(-1)^{n-k}[t^k]\chi_G(t) = \#$ of acyclic orientations of G with k source components.

QUESTION

Given an arrangement \mathcal{A} which has a combinatorial labeling of the regions, find $v \in \mathbb{R}^n$ such that $\operatorname{pd}_v(R)$ is a "nice" combinatorial statistic on the object labeling the region R.

Main Results

- For the braid arrangement, the projection statistic coincides with the RLmin statistic on permutations.
- \bullet For graphical arrangements, the projection statistic coincides with the Greene and Zaslavsky statistic.
- The interpretation of the projection statistic for the braid arrangement generalizes to natural unit interval graphs.

*Dept. of Mathematics, Brandeis University, Waltham, USA. ngoregaokar@brandeis.edu

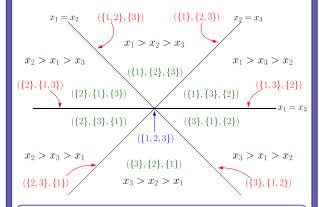
THE BRAID ARRANGEMENT

The Arrangement: The braid arrangement of dimension n is

$$\mathcal{B}_n = \bigcup_{1 \le i < j \le n} \{ x_i = x_j \}.$$

Labeling. For the braid arrangement \mathcal{B}_n ,

- \bullet Regions are labeled by permutations of [n].
- Flats are labeled by partitions of [n].
- \bullet Faces are labeled by ordered partitions of [n].

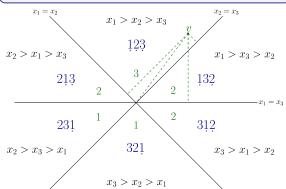


Theorem.

For $v \in \mathbb{R}^n$ be such that $v_1 > \ldots > v_n$ and $v_i - v_{i+1} > n(v_{i+1} - v_n)$, and $\sigma \in \mathfrak{S}_n$,

 $\operatorname{pd}_{v}(R_{\sigma}) = \# \text{ of right-to-left minima of } \sigma,$

where R_{σ} is the region of \mathcal{B}_n labeled by σ .



Lemma.

For $v \in \mathbb{R}^n$ as above and $\Pi = (B_1, \dots, B_k)$ an ordered partition of [n], $\operatorname{proj}_v(\operatorname{span}(F_{\mathbb{H}}))$ lies in the relative interior of $F_{\mathbb{H}}$ if and only if $\min(B_i) < \min(B_{i+1})$ for all i < k.

Graphical Arrangements

The Arrangement: Let G = ([n], E) be a graph. The *graphical arrangement*

$$\mathcal{A}_G = \bigcup_{\{i,j\}\in E} \{x_i = x_j\}.$$

Labeling. Associate to each region R of A_G the acyclic orientation γ_R of G, given by directing the edge $\{i,j\}$ towards i if $x_i \geq x_j$ in R.

Source Components.

1st component $S_1 = 1$ -reachable vertices

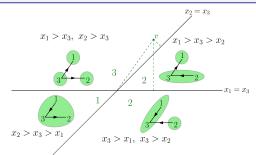
kth components $S_k = r$ -reachable vertices (not in S_i for i < k) where $r = \min([n] \setminus \bigcup_{i \in k} S_i)$.

Theorem.

For $v\in\mathbb{R}^n$ such that $v_i>(6n^2+1)v_{i+1}$ and $v_n>0$, and R a region of the graphical arrangement \mathcal{A}_G ,

$$\operatorname{pd}_v(R) = \#$$
 of source components of γ_R .

In fact, the face of R that $\text{proj}_{\nu}(R)$ lies in the interior of is the face labeled by the ordered partition of source components of γ_R .



NATURAL UNIT INTERVAL GRAPHS

Definition: A graph G = ([n], E) is a natural unit interval graph if

$$\forall 1 \le i < k < j \le n$$
, if $\{i, j\} \in E$, then $\{i, k\}, \{k, j\} \in E$.

${ m Theorem}.$

For G = ([n], E) a natural unit interval graph, and $v \in \mathbb{R}^n$ as above,

$$pd_{n}(R) = \#$$
 of right-to-left minima of σ .

where σ is the lexicographic minimum permutation associated to the region R of \mathcal{A}_G .

Corollary.

Let G = ([n], E) be a natural unit interval graph. Then, $\chi_{\mathcal{A}_{\mathcal{G}}}(q) = \prod_{j=1}^{n} (q - c_j)$, where $c_i = |\{i < j \mid \{i, j\} \in E\}|$ for all $j \in [n]$.