A Combinatorial Model for Affine Demazure Crystals of Levels Zero and One

Samuel Spellman and Cristian Lenart

State University of New York at Albany

Motivation

Crystals are colored, directed graphs that play an important role in the representation theory of quantum groups.

- Important examples include:
- highest weight crystals and their Demazure subcrystals.
- KR crystals and their "Demazure-type" subcrystal analouges
- Explicit realizations of crystals are desired, as well as crystal maps that can translate information between different realizations.

KR Crystals and Macdonald **Polynomials**

Kirillov-Reshetikhin (KR) modules are finite-dimensional $\hat{\mathfrak{g}}$ -modules for affine Lie algebras, not of highest weight.

- Most KR modules were shown to admit crystal bases, called **KR crystals**. Throughout we focus on tensor products of single-column KR crystals.
- The quantum alcove model uniformly realizes tensor products of single-column KR crystals in untwisted types [1].
- Inside (tensor products of) KR crystals are "Demazure-type" subcrystals, called DARK crystals (Kirillov-Reshetikhin affine Demazure). They correspond to certain quotients of level zero extremal weight modules [2].
- \bullet In type A, there is a tabloid model for level one affine Demazure crystals [3].
- Remark: The above two crystals were shown to be isomorphic [4].

Nonsymmetric Macdonald polynomials are important families of polynomials with parameters q and t. Specialized to t = 0, they are the graded characters of DARK crystals. The grading is by the energy function, which is calculated by height statistics from the quantum alcove model [1].

Non-symmetric Quantum Alcove Model

Let \mathfrak{q} be a simple Lie algebra and fix an arbitrary weight μ . There exists a unique maximal-length Weyl group element w such that $\mu = w\lambda$ for a dominant weight λ . The objects of the model depend on two related paths through the weight lattice of \mathfrak{q} , depending on μ . These paths can be encoded as sequences of roots:

$$\Gamma = (\gamma_1, \gamma_2, \dots \gamma_m)$$
 $\Gamma' = w^{-1}\Gamma = (\beta_1, \beta_2, \dots \beta_m)$

Definition: A subset $J \subseteq [m]$ is w-admissible if there is a path in the quantum Bruhat graph

$$w \leftarrow ws_{\beta_{j_1}} \leftarrow ws_{\beta_{j_1}}s_{\beta_{j_2}} \leftarrow \cdots \leftarrow ws_{\beta_{j_1}}s_{\beta_{j_2}} \ldots s_{\beta_{j_s}}.$$

Denote by $\mathcal{A}_w(\Gamma')$ the set of w-admissible subsets.

Remark: We identify a w-admissible subset with a folding of the path Γ along the corresponding hyperplanes.

- We define **crystal operators** e_i , f_i on $\mathcal{A}_w(\Gamma')$
- The operators act by adding to and (possibly) removing a single element from J.
- In terms of the alcove path, this amounts to folding and (possibly) unfolding Γ .

First Theorem

For a weight $\mu = w\lambda$, the w-admissible subsets together with the operators e_i , f_i , for $0 \le i \le n$ defined by

$$e_i(J) = J \setminus \{m\} \cup \{k\}$$
$$f_i(J) = J \setminus \{k\} \cup \{m\},\$$

form an abstract $U_q(\widehat{\mathfrak{g}})$ -crystal isomorphic to the Demazure-type affine crystal DARK_w(λ).

Example: The alcove paths Γ . Γ' in type A_2 for the weight $\mu = (0, 3, 1)$, and the folded path corresponding to $J = \{1, 2, 5\}.$

$$\Gamma = ((1,2)(1,3)|(1,2)|(3,2)(1,2))$$

$$\Gamma' = ((1,3)(2,3)|(1,3)|(1,2)(1,3))$$

Second Theorem

In type A, there is an explicit crystal isomorphism between w-admissible subsets and semistandard kev tabloids, i.e.

- $e_i(\text{fill}(J)) = \text{fill}(e_i(J)),$
- $f_i(\text{fill}(J)) = \text{fill}(f_i(J)).$
- Moreover, the iso preserves weights and major index.

- translates between the statistics *height* and

Tabloid Model for Affine Demazure Crystals in Type A

In type A, the monomial terms of the nonsymmetric Macdonald polynomial at t=0 are indexed by objects called **semistandard key tabloids** (SSKD(μ)), fillings of diagrams of shape μ subject to conditions on pairs and triples of boxes. These come with a level one affine Demazure crystal structure [3].

Example of crystal operator e_4 for $\mu = (0, 0, 4, 0, 6, 2, 2)$:

Relating the Two Models

We construct a map fill: $\mathcal{A}_w(\Gamma') \to SSKD(\mu)$ as well as its inverse.

Starting from the identity, we apply in order the transpositions in Γ corresponding to J:

Looking at only the boxes with bold entries gives

$$fill(J) = \begin{array}{|c|c|c|c|} \hline 2 \\ \hline 1 & 1 & 3 \\ \hline \end{array}$$

Given a semistandard key tabloid T, we construct a box-by-box "greedy" algorithm that recovers the w-admissible subset J such that fill(J) = T.

The Crystal DARK
$$_w(\lambda)$$
 for $\lambda = (3, 1, 0)$ and $w = 231$

References

- [1] C. Lenart, S. Naito, D. Sagaki, A. Schilling, and M. Shimozono
- A uniform model for kirillov–reshetikhin crystals iii: nonsymmetric macdonald polynomials at t = 0 and demazure characters.
- Transform. Groups, 22:1041-1079, 2015
- [2] J. Blasiak, J. Morse, and A. Pun.
- [3] S. Assaf and N. González
- Affine demazure crystals for specialized nonsymmetric macdonald polynomials
- [4] G. Fourier, A. Schilling, and M. Shimozono Demazure structure inside kirillov-reshetikhin crystals