What does pattern avoidance have to do with trees and moduli of curves?

Andrew Reimer-Berg Colorado State University

Geometric Background

- $ullet \overline{M}_{0,n+3}$: moduli space of genus 0 stable curves with n+3 marked points
- Cohomology classes: $\psi_i := c_1(\mathbb{L}_i)$
- Forgetting map $\pi_i: \overline{M}_{0,i+3} \to \overline{M}_{0,i+2}$: forgets the marked point i
- Pullback ψ_i along forgetting maps: $\omega_i := \pi_n^* \circ \pi_{n-1}^* \circ \cdots \circ \pi_{i+1}^* (\psi_i)$
- $\underline{k} = (k_1, \ldots, k_n)$: composition of $n \ (k_i \in \mathbb{Z}_{\geq 0} \text{ and } \Sigma_i k_i = n)$
- Geometric question ([1, 2, 3]): embed $\overline{M}_{0,n+3}$ into product of projective spaces, study map using ω -classes.

Theorem 1 ([2]). $\int_{\overline{M}_{0,n+3}} \omega^{\underline{k}} = \left\langle \frac{n}{\underline{k}} \right\rangle = \left| \text{Slide}^{\omega} \left(\underline{k} \right) \right| = \left| \text{Tour} \left(\underline{k} \right) \right|.$

• $\langle \underline{k} \rangle$: asymmetric multinomial coefficients defined by $\langle \underline{1} \rangle = 1$ and

$$\left\langle \frac{n}{\underline{k}} \right\rangle = \sum_{j=i+1}^{n} \left\langle \frac{n-1}{\underline{k}^{(j)}} \right\rangle.$$

- Tour (\underline{k}) , Slide (\underline{k}) : sets of trivalent trees
- **GOAL**: Find bijection Tour $(\underline{k}) \leftrightarrow \text{Slide}^{\omega}(\underline{k})$

Slide Trees

Definition 2 (Slide labeling algorithm). A tree T is in Slide (\underline{k}) (resp. Slide (\underline{k})) if the following algorithm finishes successfully:

- 0. Start with $\ell = n$.
- 1. Choose next edge to label: Let e be the first unlabeled internal edge on path from leaf ℓ to a. (If none exist, then labeling fails.)
- 2. **Verify that label is valid:** Let m_1 be smallest leaf label on the same side of e as ℓ , and m_2 the smallest on the same side of e as a, excluding the branch containing a itself. If $\ell \ge m_1 \ge m_2$, (resp. $m_1 \ge m_2$,) then label e with ℓ . Else, terminate.
- 3. **Iterate:** If ℓ has labeled k_{ℓ} edges, decrement ℓ . If $\ell = 0$, we're done.
- 4. Contract labeled edges.

Example 3. The following tree is in Slide (0, 1, 1, 1, 0, 2, 2).

Patterns and Caterpillars

• Barred patterns: Let some entries of pattern π be barred. For word τ to contain π , it must have a subword with the relative order of the non-barred portion of π that is **not** a subword of all of π .

Example 7. $\tau = 1\underline{2}34\underline{5}6$ contains $\pi = 23\overline{1}$, while $\tau = 234561$ avoids π .

• Vincular patterns: Impose adjacency conditions, use a dash to indicate entries of π that need not be adjacent to each other in τ .

Example 8. $\tau = 3\underline{25}4\underline{1}$ contains $\pi = 23-1$, while $\tau = 43152$ avoids π .

• A tree of the form b is called a caterpillar tree. Denote the set of caterpillars by $\operatorname{Cat}^{\omega}(\underline{k}) \subseteq \operatorname{Slide}^{\omega}(\underline{k})$.

Theorem 9 (R.-B.). Let \underline{k} be a reverse-Catalan composition, and let w be a word of composition \underline{k} . Then:

- tree $(w) \in \operatorname{Cat}^{\psi}(\underline{k})$ if and only if $w \in \operatorname{Av}_{\underline{k}}\left(2-1-2,23-\overline{2}-1\right)$ and $\operatorname{TotalRep}_{w}(i) + \ell_{i} \geq z$ (i) for all i, and
- tree $(w) \in \operatorname{Cat}^{\omega}(\underline{k})$ if and only if $w \in \operatorname{Av}_{\underline{k}}\left(2-1-2,23-\overline{2}-1\right)$ and $\operatorname{BigRep}_{w}(i) \geqslant z(i)$ for all i.

Example 10. a 3 3 1 5 5 5 is in Slide (1, 0, 2, 0, 2), but not Slide (1, 0, 2, 0, 2).

The case $\underline{k} = (1, 1, \dots, 1)$

Theorem 4 ([2]). There exists a bijection

$$\phi: \operatorname{Av}_n(23-1) \longleftrightarrow \operatorname{Cat}(1, 1, \dots, 1)$$
.

• Given permutation τ , let x, y, z be earliest 23–1 pattern in τ , and write $\tau = wxyuzv$

Theorem 5 (R.-B.). Define a map ρ recursively as follows.

- If $\tau \in Av_n(23-1)$, then $\rho(\tau) := \phi(\tau)$.
- Otherwise, let $\rho(\tau)$ be tree formed by "splicing" $\rho(wxyu)$ and $\rho(wxzv)$ together.

The resulting map $\rho:\mathfrak{S}_n \longleftrightarrow \mathrm{Slide}\,(\underline{k})$ is a bijection.

Example 6. Let $\tau = 85\underline{37}694\underline{2}1$. Then, $\rho(\tau)$ is as follows:

Main Bijection (R.-B.)

- We show that Slide (\underline{k}) satisfy asymmetric multinomial recurrence.
- Idea: Build bijection

$$\operatorname{Slide}^{\omega}(\underline{k}) \longleftrightarrow \bigsqcup_{j=i+1}^{n} \operatorname{Slide}^{\omega}(\underline{k}^{j})$$

- Define maps $\hat{\sigma}_{i,j}$, $\hat{\sigma}_j$ from Slide (\underline{k}'_j) to Slide (\underline{k}') , for certain compositions \underline{k}'_j of n-1
- Piece these together to form $\Sigma_{\underline{k}} : \bigsqcup_{j=i+1}^n \operatorname{Slide}^{\omega}(\underline{k}^j) \to \operatorname{Slide}^{\omega}(\underline{k})$
- For bijection between Tour (\underline{k}) and Slide (\underline{k}) , unwind both recurrences iteratively
- Examples of $\hat{\sigma}_{i,j}$ and $\hat{\sigma}_{j}$:

References

- [1] Renzo Cavalieri, Maria Gillespie, and Leonid Monin. Projective embeddings of $\overline{M}_{0,n}$ and parking functions. Journal of Combinatorial Theory, Series A, 182, 12 2019.
- [2] Maria Gillespie, Sean Griffin, and Jake Levinson. Degenerations and multiplicity-free formulas for products of ψ and ω classes on $\overline{M}_{0,n}$. Mathematische Zeitschrift, 304, 07 2023.
- [3] Mikhail M Kapranov. Veronese curves and Grothendieck-Knudsen moduli space $\overline{M}_{0,n}$. J. Algebraic Geom, 2:239–262, 1993.
- [4] Andrew Reimer-Berg. Insertion algorithms and pattern avoidance on trees arising in the Kapranov embedding of $\overline{M}_{0,n+3}$, 2025. Preprint, http://arxiv.org/abs/2504.17098.