A charge monomial basis of the Garsia-Procesi ring

Mitsuki Hanada¹

¹Department of Mathematics, UC Berkeley

Combinatorial Definitions

• A standard Young tableau (SYT) of shape $\lambda \vdash n$ and the entries are increasing within the rows and is a filling of λ where $\{1,\ldots,n\}$ appear exactly once

$$=(4,2,1)$$

- For a permutation $\sigma \in S_n$, the **Major index** statistic is $\operatorname{maj}(\sigma) := \sum_{i:\sigma_i > \sigma_{i+1}} i$.
- The Robinson-Schensted correspondence gives
- where $\sigma \mapsto (P(\sigma), Q(\sigma))$. $S_n \Leftrightarrow \{(P,Q) \mid P,Q \in \text{SYT}_n, \text{shape}(P) = \text{shape}(Q)\}$

Charge

 $\operatorname{maj}(\sigma) = \operatorname{charge}(w) \text{ for } \sigma = \operatorname{rev}(w^{-1}).$ The Charge statistic on permutations is related to maj by

The **charge word** c(w) of w is a labeling of w given by:

$$\odot$$
 if we label i by k , we label $i+1$ by $\int k+1$ if $i+1$ is to the right of i

The word consisting of these labels is the charge word c(w)if i is to the left of i

$$w = 4 \ 2 \ 1 \ 5 \ 3$$

 $c(w) = 1 \ 0 \ 0 \ 2 \ 1$

Here are some facts about charge:

- charge(w) is the sum of the entries in c(w).
- For SYT T, define $\operatorname{charge}(T) := \operatorname{charge}(\operatorname{rw}(T))$ where rw(T) is the **row reading word** of T.
- If P(w) = P(w'), then charge(w) = charge(w').

Frobenius character

(Frob(V)) is a symmetric function encoding its decomposition into irreducibles via the map $\operatorname{ch}(V_{\lambda}) \mapsto s_{\lambda}[X]$. For a S_n representation V, the **Frobenius character** of V

$$\text{Frob}(V_{(2,1)} \oplus V_{(1,1,1)}) = s_{(2,1)} + s_{(1,1,1)}.$$

For graded $V=\oplus_{d\geq 0}V_d$, the **graded Frobenius character** $\operatorname{Frob}_q(V)$ is $\operatorname{Frob}_q(V)=\sum\limits_{d\geq 0}q^d\operatorname{Frob}(V_d).$

The coinvariant ring

The **coinvariant ring** R_{1} ^{*} is defined to be $R_{1^n} = \mathbb{C}[\mathbf{x}]/\langle e_k(\mathbf{x}) \text{ for } k \in \{1, \dots, n\} \rangle$

ere
$$e_k(\mathbf{x}) = \sum_{i_1 < i_2 < \dots < i_k} x_{i_1} x_{i_2} \cdots x_{i_k}$$
.

As S_n -representations, R_{1^n} is isomorphic to...

- Regular rep of S_n(ungraded)
- Cohomology ring of the flag variety (as graded S_n reps)

Monomial bases of coinvariant ring

Remark

- Frob_q $(R_{1^n}) = \sum_{T \in SYT_n} q^{\operatorname{charge}(T)} s_{\operatorname{shape}(T^i)}$ • $\mathrm{Hilb}_{\mathbf{q}}(R_{1^n}) = [n]_{q^1}$ where $[k]_{q} = (1 + q + \cdots + q^{k-1})$.
- dexed by permutations $\sigma \in S_n$ There are two well-known monomial base of R_{l^n} , both in-
- Artin basis

 $\{f_{\sigma}(\mathbf{x}) =$

- Descent basis
- where $deg(f_{\sigma}) = inv(\sigma)$. $\prod x_{\sigma_i}$ $\{g_{\sigma}(\mathbf{x}) = \prod x_{\sigma_1} \cdots x_{\sigma_i}\}$ where $deg(g_{\sigma}) = maj(\sigma)$

Why are these bases nice?

Both bases are compatible with the Hilbert series of $R_{\mathbb{I}^n}$: $\sum_{S_n} q^{\mathrm{inv}(\sigma)} = \sum_{\sigma \in S_n} q^{\mathrm{maj}(\sigma)} = [n]_q! = \mathrm{Hilb}_{\mathrm{q}}(R_{1^n}).$

Garsia-Procesi rings

the coinvariant ring, defined to be: For $\mu \vdash n$, the **Garsia-Procesi ring** R_{μ} are quotients of

$$R_{\mu}=\mathbb{C}[\mathbf{x}]/I_{\mu}$$

where the ideal I_{μ} is generated by

$$\{e_d(S) \mid S \subset \{x_1, \dots, x_n\}, |S| - p_{|S|}^n(\mu) < d \le |S|\}$$
 where $p_k^n(\mu)$ is the number of boxes that are **not** in the first $(n-k)$ columns of the Young diagram of μ .

As S_n -representations, R_μ is isomorphic to..

- the induction of the trivial 1 ↑ⁿ_{S_L} (ungraded)
- Cohomology ring of Springer fibers indexed by μ (Springer fiber ⊂ Flag variety)

Modified Hall-Littlewood polynomials

For $\mu \vdash n$, we have

$$\operatorname{Frob}_{\mathbf{q}}(R_{\mu}) = H_{\mu}[X;q]$$

where $\tilde{H}_{\mu}[X;q]$ is the modified Hall-Littlewood polynomial

Theorem (Lascoux 1989)

$$\bar{H}_{\mu}[X;q] = \sum_{T \in SYT_n} q^{\mathrm{charge}(T)} s_{\mathrm{blape}(T')},$$
 where T' denotes the transpose of $T.$

 $\{T \in \operatorname{SYT}_n \mid \operatorname{ctype}(T) {\trianglerighteq} \mu\} \leftrightarrow \{S \in \operatorname{SSYT} \text{ with weight } \mu\}$ tion. There exists a cocharge/shape preserving bijection: The catabolizability type ctype(T) of a SYT is a parti-

Find a description of a monomial basis of R_{μ} that is a subset of the Artin basis/Descent basis,

Question

- compatible with

$$\begin{aligned} & \operatorname{Frob}_{\mathbf{q}}(R_{\mu}) = \sum_{T \in \operatorname{SYT}_{\mathbf{q}}} q^{\operatorname{diage}(T)} s_{\operatorname{slape}(T)} \\ & \operatorname{etype}(T^{!}) \trianglerighteq_{\mu} \\ & \operatorname{Hilb}_{\mathbf{q}}(R_{\mu}) = \sum_{w \in S_{\mathbf{q}}} q^{\operatorname{diage}(w)}. \end{aligned}$$

The set

$$\{\mathbf{x}^{c(w)}\mid w\in S_m \ \text{ctype}(P(w)^t)\trianglerighteq \mu\}$$
 is a monomial basis of $R_{\mu}.$

There is an alternative construction of this basis due to Carlsson–Chou [1] but it is not compatible with $\mathrm{Hilb}_q(R_\mu)$

Example: basis of R_{μ} for $\mu = (2, 1, 1)$

4 3 2 2 4321}	3 2 1 4 {32	421	2 4 1 3 {214	2 (213	$S = \{w\}$
21}	$\{3214, 3241, 3421\} \{x_4, x_3, x_2\}$	{4213, 4231, 2431}	{2143, 2413}	{2134, 2314, 2341}	$\{w \mid P(w) = S\}$
{1}	$\{x_4, x_3, x_2\}$	$\{x_1x_4, x_1x_3, x_2x_3\}$	$\{x_3x_4, x_2x_4\}$	$\{x_3x_4^2, \ x_2x_4^2, \ x_2x_3^2\}$	$\{x^{c(w)} \mid P(w) = S\}$

Why is this basis nice?

- It is a subset of the descent basis of R_{I^n} . (charge \leftrightarrow
- It is compatible with

• It gives an elementary proof of $\operatorname{Frob}_q(R_\mu) = \tilde{H}_\mu[X;q]$ character. that only depends on the ungraded Frobenius

 $H_{\mu}[X;q].$ ture of R_{μ} as a ring and the combinatorial formula for This gives the first direct connection between the struc-

$\operatorname{Frob}_{\mathfrak{q}}(R_{\mu}) = H_{\mu}[X;q]$

For $\mathbb{C}S_n$ -module V, $\operatorname{Frob}_q(V)$ is determined by $\mathrm{Hilb}_{\mathbf{q}}(N_{\gamma}V) = \langle e_{\gamma}, \mathrm{Frob}_{\mathbf{q}}(V) \rangle$

We also know for all $\gamma \vdash n$, where $N_{\gamma} = \sum_{\sigma \in S_{\gamma}} \operatorname{sgn}(\sigma) \sigma$.

 $\langle e_{\gamma}, \ \bar{H}_{\mu}[X;q] \rangle =$ $= \sum_{\substack{w \in S_n \\ \operatorname{ctype}(P(w)^l) \not \succeq \mu \\ \operatorname{des}(w) \subset \{\gamma_1, \gamma_1 + \gamma_2, \dots, \gamma_1 + \dots + \gamma_{l-1}\}}} q'$ $q^{\text{charge}(w)}$.

is a basis of $N_{\gamma}R_{\mu}$ where $\operatorname{des}(w) = \{i \mid w_i > w_{i+1}\}.$ $\{N_{\gamma}\mathbf{x}^{\operatorname{c}(w)}\mid w\in S_n, \operatorname{ctype}(P(w)^t)\trianglerighteq \mu,$ Let $\mu, \gamma \vdash n$. The set $\operatorname{des}(w) \subset \{\gamma_1, \gamma_1 + \gamma_2, \dots, \gamma_1 + \dots + \gamma_{l-1}\} \}.$

This implies the following:

Corollary

We have

$$f$$
. f :
 $\mathrm{dib}_q(N_\gamma R_\mu) = \sum_{\substack{C \subseteq C}} q^{\mathrm{charge}(w)}. \quad \Box$

 $\operatorname{Frob}_{\mathbf{q}}(R_{\mu}) = H_{\mu}[X;q]$

 $Hilb_q(N_\gamma R_\mu) =$

 $= \sum_{\substack{w \in S_n \\ \operatorname{ctype}(P(w)^j) \geq \mu \\ \operatorname{des}(w) \subset \{\gamma_1, \gamma_1 + \gamma_2, \dots, \gamma_1 + \dots + \gamma_{l-1}\}}} q$

Example: basis of $N_{\gamma}R_{\mu}$ for $\gamma=(2,2)$

There are 5 SYT P that satisfy $\operatorname{ctype}(P^t) \trianglerighteq (2, 1, 1)$:

that $des(Q) \subset \{2\} = \{\gamma_1\}$: Note that des(w) = des(Q(w)). There are 3 SYT Q such

We have two pairs (P,Q) where P,Q are the same shape $\left(\frac{2}{134}, \frac{3}{124}\right) \leftrightarrow w = 2314 \leftrightarrow c(w) = 0102,$

$$\begin{pmatrix} \frac{2|4}{1|3}, \frac{3|4}{1|2} \end{pmatrix} \leftrightarrow w = 2413 \leftrightarrow c(w) = 0101.$$

The basis of $N_{\gamma}R_{\mu}$ is $\{N_{\gamma}(x_2x_4^2), N_{\gamma}(x_2x_4)\}$

References

- E.Carlsson and R. Chou, A descent basis for the Garsia-Procesi module, Adv. Math 457 (2024)
- A.M. Garsia and C.Procesi, On certain graded Sn-modules and the q-Kostka polynomials, Adv. Math 94.1 (1992)
- M.Hanada, A charge monomial of the Garsia-Procesi rings, arXiv: 2410.15514
- A.Lascoux, Cyclic permutations on words, tableaux and $harmonic\ polynomials,$ Proc. of the Hyderabad Conference on Algebraic Groups (1989)